Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36772286

RESUMO

Snowfall, snowpack, and snowmelt are among the processes with the greatest influence on the water cycle in mountainous watersheds. Hydrological models may be significantly biased if snow estimations are inaccurate. However, the unavailability of in situ snow data with enough spatiotemporal resolution limits the application of spatially distributed models in snow-fed watersheds. This obliges numerous modellers to reduce their attention to the snowpack and its effect on water distribution, particularly when a portion of the watershed is predominately covered by snow. This research demonstrates the added value of remotely sensed snow cover products from the Moderate Resolution Imaging Spectroradiometer (MODIS) in evaluating the performance of hydrological models to estimate seasonal snow dynamics and discharge. The Soil and Water Assessment Tool (SWAT) model was used in this work to simulate discharge and snow processes in the Oued El Abid snow-dominated watershed. The model was calibrated and validated on a daily basis, for a long period (1981-2015), using four discharge-gauging stations. A spatially varied approach (snow parameters are varied spatially) and a lumped approach (snow parameters are unique across the whole watershed) have been compared. Remote sensing data provided by MODIS enabled the evaluation of the snow processes simulated by the SWAT model. Results illustrate that SWAT model discharge simulations were satisfactory to good according to the statistical criteria. In addition, the model was able to reasonably estimate the snow-covered area when comparing it to the MODIS daily snow cover product. When allowing snow parameters to vary spatially, SWAT model results were more consistent with the observed streamflow and the MODIS snow-covered area (MODIS-SCA). This paper provides an example of how hydrological modelling using SWAT and snow coverage products by remote sensing may be used together to examine seasonal snow cover and snow dynamics in the High Atlas watershed.

2.
Acta Psychol (Amst) ; 227: 103604, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35537234

RESUMO

Ten good outcome and ten poor outcome psychotherapy cases were compared to investigate whether or not the temporal stability and flexibility of their process variables can predict their outcomes. Each participant was monitored daily using the Therapy Process Questionnaire (TPQ), which has 43 items and seven sub-scales, and responses over time were analyzed in terms of correlation robustness and correlation variability across the TPQ sub-scales. "Correlation robustness" and "correlation variability" are two basic characteristics of any correlation matrix: the first is calculated as the sum of the absolute values of Pearson correlation coefficients, the second as the standard deviation of Pearson correlation coefficients. The results demonstrated that the patients within the poor outcome group had lower values on both variables, suggesting lower stability and flexibility. Furthermore, a higher number of cycles of increase and decrease in correlation robustness and variability of the TPQ sub-scales was observed within good outcome psychotherapies, suggesting that, these cycles can be considered as process-markers of good-outcomes. These results provide support for the validity of these quantitative process-parameters, correlation robustness and variability, in predicting psychotherapeutic outcomes. Moreover, the results lend support to the common clinical experience of alternating periods of flexibility and integration being beneficial to good psychotherapeutic processes.


Assuntos
Processos Psicoterapêuticos , Psicoterapia , Humanos , Psicoterapia/métodos , Inquéritos e Questionários
3.
Front Psychol ; 11: 788, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508701

RESUMO

Statistical mechanics is the field of physics focusing on the prediction of the behavior of a given system by means of statistical properties of ensembles of its microscopic elements. The authors examined the possibility of applying such an approach to psychotherapy research with the aim of investigating (a) the possibility of predicting good and poor outcomes of psychotherapy on the sole basis of the correlation pattern among their descriptors and (b) the analogies and differences between the processes of good- and poor-outcome cases. This work extends the results reported in a previous paper and is based on higher-order statistics stemming from a complex network approach. Four good-outcome and four poor-outcome brief psychotherapies were recorded, and transcripts of the sessions were coded according to Mergenthaler's Therapeutic Cycle Model (TCM), i.e., in terms of abstract language, positive emotional language, and negative emotional language. The relative frequencies of the three vocabularies in each word-block of 150 words were investigated and compared in order to understand similarities and peculiarities between poor-outcome and good-outcome cases. Network analyses were performed by means of a cluster analysis over the sequence of TCM categories. The network analyses revealed that the linguistic patterns of the four good-outcome and four poor-outcome cases were grounded on a very similar dynamic process substantially dependent on the relative frequency of the states in which the transition started and ended ("random-walk-like behavior", adjusted R 2 = 0.729, p < 0.001). Furthermore, the psychotherapy processes revealed statistically significant changes in the relative occurrence of visited states between the beginning and the end of therapy, thus pointing to the non-stationarity of the analyzed processes. The present study showed not only how to quantitatively describe psychotherapy as a network, but also found out the main principles on which its evolution is based. The mind, from a linguistic perspective, seems to work-through psychotherapy sessions by passing from the most adjacent states and the most occurring ones. This finding can represent a fertile ground to rethink pivotal clinical concepts such as the timing of an interpretation or a comment, the clinical issue to address within a given session, and the general task of a psychotherapist: from someone who delivers a given technique toward a consultant promoting the flexibility of the clinical field and, thus, of the patient's mind.

4.
Sci Total Environ ; 672: 283-295, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959295

RESUMO

The influence of climate change on the availability and quality of both surface- and ground-water resources is well recognized nowadays. In particular, the mitigation of saline water intrusion mechanisms in coastal aquifers is a recurrent environmental issue. In the case of the Nile delta, the presence of sea level rise and the perspective of other human-induced stressors, such as the next operation of the Grand Ethiopian Renaissance Dam, are threats to be taken into account for guaranteeing resilient agricultural practices within the future possible scenarios. Subsurface drainage offers a practical solution to the problem of upward artesian water movement and the simultaneous downward flow of excess irrigation water, to mitigate the salinization in the root zone. Subsurface draining systems can contribute to mitigate the vulnerability to climate change and to the increased anthropic pressure insofar they are able to receive the incremented flow rate due to the foreseen scenarios of sea level rise, recharge and subsidence. This paper introduces a rational design of subsurface drainage systems in coastal aquifers, taking into account the increment of flow in the draining pipes due to future possible conditions of sea level rise, artificial recharge and subsidence within time horizons that are compatible with the expected lifespan of a buried drainage system. The approach proposed in this paper is characterized by the assessment of the incremental flow through the drains as a function of various possible scenarios at different time horizons. Our calculations show that the impact on the discharge into the existing subsurface drainage system under the new foreseen conditions is anything but negligible. Thus, future climate-related scenarios deeply impact the design of such hydraulic structures, and must be taken into account in the frame of the next water management strategies for safeguarding agricultural activities in the Nile delta and in similar coastal contexts.

5.
Data Brief ; 8: 858-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27508232

RESUMO

A large number of portfolio selection models have appeared in the literature since the pioneering work of Markowitz. However, even when computational and empirical results are described, they are often hard to replicate and compare due to the unavailability of the datasets used in the experiments. We provide here several datasets for portfolio selection generated using real-world price values from several major stock markets. The datasets contain weekly return values, adjusted for dividends and for stock splits, which are cleaned from errors as much as possible. The datasets are available in different formats, and can be used as benchmarks for testing the performances of portfolio selection models and for comparing the efficiency of the algorithms used to solve them. We also provide, for these datasets, the portfolios obtained by several selection strategies based on Stochastic Dominance models (see "On Exact and Approximate Stochastic Dominance Strategies for Portfolio Selection" (Bruni et al. [2])). We believe that testing portfolio models on publicly available datasets greatly simplifies the comparison of the different portfolio selection strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA