Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 14(11): 8398-404, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958535

RESUMO

Organically modified xerogels have an advantage over gas sensing applications due to their open, rigid structure and hydrophobicity. Here we evaluated the biocompatibility of xerogel-derived nitric oxide (NO) permeable membranes modified with fluorinated functional groups for application in cellular sensing by growing RAW 264.7 macrophages on them. We examined the cell viability, adhesion and growth of RAW 264.7 macrophages on NO permselective membrane and other cell-adhesive matrices, poly L-lysine and collagen. The surface roughness of each membrane was obtained from topographic atomic force microscopy (AFM) images. In addition, we measured the level of NO release of RAW 264.7 macrophages by lipopolysaccharide (LPS) stimulation using a Griess assay to confirm the function of cells. The fluorinated xerogel-derived membrane had a very smooth surface with rms roughness 2.1 Å and did not show cytotoxic effects in RAW 264.7 macrophages. As a result, the morphology and function of adhering RAW 264.7 macrophage showed no differences from those of other cell-adhesive membranes. Finally, we successfully detected NO release in RAW 264.7 macrophages stimulated by LPS, using a planar-type xerogel-derived NO sensor. Therefore, we suggest that fluorinated xerogel-derived membrane could be used as both a NO permeable and cell-adhesive membrane for cellular sensing applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flúor/química , Géis/farmacologia , Macrófagos/citologia , Membranas Artificiais , Óxido Nítrico/metabolismo , Animais , Materiais Biocompatíveis/química , Técnicas Biossensoriais , Linhagem Celular , Géis/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nanotecnologia , Propriedades de Superfície
2.
Anal Chim Acta ; 802: 74-81, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24176507

RESUMO

In this study, we simultaneously measured nitric oxide (NO) and oxygen (O2) dynamics in the myocardium during myocardial ischemia-reperfusion (IR) utilizing sol-gel modified electrochemical NO and O2 microsensors. In addition, we attempted to clarify the correlation between NO release in the ischemic period and O2 restoration in the myocardium after reperfusion, comparing a control heart with a remote ischemic preconditioning (RIPC)-treated heart as an attractive strategy for myocardial protection. Rat hearts were randomly divided into two groups: a control group (n=5) and an RIPC group (n=5, with RIPC treatment). Myocardia that underwent RIPC treatment (182±70 nM, p<0.05) released more NO during the ischemic period than those of the control group (63±41 nM). The restoration value of oxygen tension (pO2) in the RIPC group significantly increased and was restored to pre-ischemic levels (92.6±36.8%); however, the pO2 of the control group did not increase throughout the reperfusion period (5.7±7.5%, p=0.001). Myocardial infarct size measurements revealed a significant decrease in cell death in the myocardium region of the RIPC group (41.44±6.42%, p=0.001) compared with the control group (60.05±10.91%). As a result, we showed that the cardioprotective effect of RIPC could be attributed to endogenous NO production during the ischemic period, which subsequently promoted reoxygenation in post-ischemic myocardia during early reperfusion. Our results suggest that the promotion of endogenous formation during an ischemic episode might be helpful as a therapeutic strategy for protecting the myocardium from IR injury. Additionally, our NO and O2 perm-selective microsensors could be utilized to evaluate the effect of drug or treatment.


Assuntos
Técnicas Eletroquímicas , Simulação de Dinâmica Molecular , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Animais , Técnicas Eletroquímicas/instrumentação , Géis , Masculino , Microeletrodos , Óxido Nítrico/análise , Oxigênio/análise , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA