Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 694: 149404, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38147698

RESUMO

At the molecular level, aging is often accompanied by dysfunction of stress-induced membrane-less organelles (MLOs) and changes in their physical state (or material properties). In this work, we analyzed the proteins included in the proteome of stress granules (SGs) and P-bodies for their tendency to transform the physical state of these MLOs. Particular attention was paid to the proteins whose gene expression changes during replicative aging. It was shown that the proteome of the studied MLOs consists of intrinsically disordered proteins, 30-40% of which are potentially capable of liquid-liquid phase separation (LLPS). Proteins whose gene expression changes during the transition of human cells to a senescent state make up about 20% of the studied proteomes. There is a statistically significant increase in the number of positively charged proteins in both datasets studied compared to the complete proteomes of these organelles. An increase in the relative content of DNA-, but not RNA-binding proteins, was also found in the SG dataset with senescence-related processes. Among SGs proteins potentially involved in senescent processes, there is an increase in the abundance of potentially amyloidogenic proteins compared to the whole proteome. Proteins common to SGs and P-bodies, potentially involved in processes associated with senescence, form clusters of interacting proteins. The largest cluster is represented by RNA-binding proteins involved in RNA processing and translation regulation. These data indicate that SG proteins, but not proteins of P-bodies, are more likely to transform the physical state of MLOs. Furthermore, these MLOs can participate in processes associated with aging in a coordinated manner.


Assuntos
Corpos de Processamento , Proteoma , Humanos , Proteoma/metabolismo , Grânulos de Estresse , Organelas/metabolismo , Biologia Computacional , Senescência Celular
2.
Opt Lett ; 48(11): 2889-2892, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262236

RESUMO

The effect of optical rectification (OR) in the terahertz range (THz rectification, TR) is experimentally demonstrated. The effect consists of generating a DC voltage on the faces of a ferroelectric triglycine sulfate (TGS) single crystal under the action of pulsed radiation with a frequency of 1.57 and 1.96 THz and an electric field strength per pulse of 1.3 and 1.5 MV/m, respectively. The FLARE FELIX free-electron laser system (Radboud University, The Netherlands) was used as a THz radiation source. The TR effect makes it possible to directly determine the nonlinear susceptibilities of media (including those under conditions of strong absorption) without any reference or optical channel calibration and also without the need of Fourier transform.

3.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36012368

RESUMO

The NOS1AP gene encodes a cytosolic protein that binds to the signaling cascade component neuronal nitric oxide synthase (nNOS). It is associated with many different disorders, such as schizophrenia, post-traumatic stress disorder, autism, cardiovascular disorders, and breast cancer. The NOS1AP (also known as CAPON) protein mediates signaling within a complex which includes the NMDA receptor, PSD-95, and nNOS. This adapter protein is involved in neuronal nitric oxide (NO) synthesis regulation via its association with nNOS (NOS1). Our bioinformatics analysis revealed NOS1AP as an aggregation-prone protein, interacting with α-synuclein. Further investigation showed that NOS1AP forms detergent-resistant non-amyloid aggregates when overproduced. Overexpression of NOS1AP was found in rat models for nervous system injury as well as in schizophrenia patients. Thus, we can assume for the first time that the molecular mechanisms underlying these disorders include misfolding and aggregation of NOS1AP. We show that NOS1AP interacts with α-synuclein, allowing us to suggest that this protein may be implicated in the development of synucleinopathies and that its aggregation may explain the relationship between Parkinson's disease and schizophrenia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Saccharomyces cerevisiae , alfa-Sinucleína , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I , Ratos , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Sinucleinopatias , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
RNA ; 25(7): 757-767, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010886

RESUMO

Poly(rC)-binding protein 2 (PCBP2, hnRNP E2) is one of the most abundant RNA-binding proteins in mammalian cells. In humans, it exists in seven isoforms, which are assumed to play similar roles in cells. The protein is shown to bind 3'-untranslated regions (3'-UTRs) of many mRNAs and regulate their translation and/or stability, but nothing is known about the functional consequences of PCBP2 binding to 5'-UTRs. Here we show that the PCBP2 isoform f interacts with the 5'-UTRs of mRNAs encoding eIF4G2 (a translation initiation factor with a yet unknown mechanism of action, also known as DAP5) and Cyclin I, and inhibits their translation in vitro and in cultured cells, while the PCBP2 isoform e only affects Cyclin I translation. Furthermore, eIF4G2 participates in a cap-dependent translation of the PCBP2 mRNA. Thus, PCBP2 and eIF4G2 seem to regulate one another's expression via a novel type of feedback loop formed by the translation initiation factor and the RNA-binding protein.


Assuntos
Regiões 5' não Traduzidas/genética , Fator de Iniciação Eucariótico 4G/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Células Cultivadas , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
5.
J Adolesc ; 88: 84-96, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667792

RESUMO

INTRODUCTION: Women and men experience sleep differently and the difference in intrinsic desire for sleep might underlie some of the observed male-female differences. The objective of this cross-sectional questionnaire study of university students was to determine male-female differences in self-reported sleepiness and sleep-wake patterns. METHODS: Five questionnaires were completed by 1650 students at four Russian universities. RESULTS: Compared to male students, female students reported a lower subjective sleep quality score, had a higher morning sleepability score and lower nighttime and daytime wakeability scores. They more often reported excessive daytime sleepiness and expected to be sleepier at any time of the day with the largest male-female difference around the times of sleep onset and offset. On free days, they reported a longer sleep duration and an earlier sleep onset. Free-weekday difference was larger for sleep duration and smaller for sleep onset. Such male-female differences showed similarity to the differences observed in university and high school students from different countries around the globe. There was no significant male-female difference in weekly averaged sleep duration, weekday sleep duration, hours slept, midpoint of sleep on free days, free-weekday difference in sleep offset, social jetlag, and morningness-eveningness score. Therefore, when studies rely on these self-reports, the most salient male-female differences might not be immediately evident. CONCLUSIONS: It seems that the intrinsic desire for longer sleep duration might contribute to a higher susceptibility of female students to weekday sleep loss. Among these students, negative effects of reduced sleep duration might be more common and more detrimental.


Assuntos
Sonolência , Universidades , Ritmo Circadiano , Estudos Transversais , Feminino , Humanos , Masculino , Sono , Estudantes , Inquéritos e Questionários
6.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804185

RESUMO

The progress of the cell cycle is directly regulated by modulation of cyclins and cyclin-dependent kinases. However, many proteins that control DNA replication, RNA transcription and the synthesis and degradation of proteins can manage the activity or levels of master cell cycle regulators. Among them, RNA helicases are key participants in RNA metabolism involved in the global or specific tuning of cell cycle regulators at the level of transcription and translation. Several RNA helicases have been recently evaluated as promising therapeutic targets, including eIF4A, DDX3 and DDX5. However, targeting RNA helicases can result in side effects due to the influence on the cell cycle. In this review, we discuss direct and indirect participation of RNA helicases in the regulation of the cell cycle in order to draw attention to downstream events that may occur after suppression or inhibition of RNA helicases.


Assuntos
Ciclo Celular/genética , Replicação do DNA/genética , RNA Helicases/genética , Divisão Celular/genética , Quinases Ciclina-Dependentes/genética , RNA Helicases DEAD-box/genética , Fator de Iniciação 4A em Eucariotos/genética , Humanos
7.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203429

RESUMO

DDX3 RNA helicase is intensively studied as a therapeutic target due to participation in the replication of some viruses and involvement in cancer progression. Here we used transcriptome analysis to estimate the primary response of hepatocytes to different levels of RNAi-mediated knockdown of DDX3 RNA helicase both in vitro and in vivo. We found that a strong reduction of DDX3 protein (>85%) led to similar changes in vitro and in vivo-deregulation of the cell cycle and Wnt and cadherin pathways. Also, we observed the appearance of dead hepatocytes in the healthy liver and a decrease of cell viability in vitro after prolonged treatment. However, more modest downregulation of the DDX3 protein (60-65%) showed discordant results in vitro and in vivo-similar changes in vitro as in the case of strong knockdown and a different phenotype in vivo. These results demonstrate that the level of DDX3 protein can dramatically influence the cell phenotype in vivo and the decrease of DDX3, for more than 85% leads to cell death in normal tissues, which should be taken into account during the drug development of DDX3 inhibitors.


Assuntos
RNA Helicases DEAD-box/metabolismo , Hepatócitos/metabolismo , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , RNA Helicases DEAD-box/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transcriptoma/genética
8.
Semin Liver Dis ; 40(1): 70-83, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31323689

RESUMO

The unique ability of the adult liver to regenerate after injury is the basis for efficient surgical resection and liver transplantation and provides solutions for the treatment of liver cancer and acute liver failure. Current success in surgical treatments could be enhanced by directed regulation of liver regeneration. A number of small molecules and growth factors have been tested in mice models to improve liver regeneration. Noncoding ribonucleic acids (ncRNA) are less studied regulators of various cellular processes. Here, the authors carefully review ncRNA involved in liver regeneration and discuss molecular mechanisms and regulatory networks. These ncRNAs modulate the expression of pro- and antiproliferative genes allowing to orchestrate precisely the proliferation of hepatocytes. The authors expect that ncRNA will become new targets in liver regeneration due to recent progress in therapeutic nucleic acids. Among a large number of preclinical studies on ncRNA, only a few entered clinical trials, and further studies are needed to uncover their potential as therapeutic targets.


Assuntos
Regeneração Hepática/genética , RNA não Traduzido/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Camundongos
9.
Anal Chem ; 92(10): 7028-7036, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32314568

RESUMO

The efficacy of fluorescent hybridization assays is often limited by the low signal-to-background ratio of the probes that can be partially overcome by sophisticated signal amplification methods. Deep understanding of the mechanisms of fluorescence quenching and energy transfer in complex DNA probes and the choice of optimal donor/acceptor pairs along with rational design can significantly enhance the performance of DNA probes. Here, we proposed and studied novel Förster resonance energy transfer (FRET) dual DNA probes with the excimer-forming pyrene pair as a donor and sulfo-Cy3 dye as an acceptor, which demonstrated remarkable 75-fold enhancement of sulfo-Cy3 fluorescence upon target capturing. Stokes shift up to 220 nm minimizes fluorescence crosstalk. Time-correlated single-photon counting revealed two excited states of pyrene excimer wherein only one is directly involved in the resonance energy transfer to sulfo-Cy3. Optimized DNA probes demonstrated high sensitivity with excellent signal-to-background ratio, which were applied for visualization of 18S rRNA by fluorescent in situ hybridization in HEK-293T cells.


Assuntos
Sondas de DNA/química , Transferência Ressonante de Energia de Fluorescência , RNA/análise , Carbocianinas/química , Sondas de DNA/síntese química , Corantes Fluorescentes/química , Estrutura Molecular , Pirenos/química
10.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764370

RESUMO

The coupling of alternative splicing with the nonsense-mediated decay (NMD) pathway maintains quality control of the transcriptome in eukaryotes by eliminating transcripts with premature termination codons (PTC) and fine-tunes gene expression. Long noncoding RNA (lncRNA) can regulate multiple cellular processes, including alternative splicing. Previously, murine Morrbid (myeloid RNA repressor of Bcl2l11 induced death) lncRNA was described as a locus-specific controller of the lifespan of short-living myeloid cells via transcription regulation of the apoptosis-related Bcl2l11 protein. Here, we report that murine Morrbid lncRNA in hepatocytes participates in the regulation of proto-oncogene NRAS (neuroblastoma RAS viral oncogene homolog) splicing, including the formation of the isoform with PTC. We observed a significant increase of the NRAS isoform with PTC in hepatocytes with depleted Morrbid lncRNA. We demonstrated that the NRAS isoform with PTC is degraded via the NMD pathway. This transcript is presented almost only in the nucleus and has a half-life ~four times lower than other NRAS transcripts. Additionally, in UPF1 knockdown hepatocytes (the key NMD factor), we observed a significant increase of the NRAS isoform with PTC. By a modified capture hybridization (CHART) analysis of the protein targets, we uncovered interactions of Morrbid lncRNA with the SFPQ (splicing factor proline and glutamine rich)-NONO (non-POU domain-containing octamer-binding protein) splicing complex. Finally, we propose the regulation mechanism of NRAS splicing in murine hepatocytes by alternative splicing coupled with the NMD pathway with the input of Morrbid lncRNA.


Assuntos
Processamento Alternativo/genética , Proteínas de Ligação a DNA/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Fator de Processamento Associado a PTB/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Animais , Códon sem Sentido/genética , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/metabolismo , Camundongos , Complexos Multiproteicos/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Transcriptoma/genética
11.
J Biol Chem ; 293(46): 17829-17837, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30262668

RESUMO

Androgens such as testosterone and dihydrotestosterone are a critical driver of prostate cancer progression. Cancer resistance to androgen deprivation therapies ensues when tumors engage metabolic processes that produce sustained androgen levels in the tissue. However, the molecular mechanisms involved in this resistance process are unclear, and functional imaging modalities that predict impending resistance are lacking. Here, using the human LNCaP and C4-2 cell line models of prostate cancer, we show that castration treatment-sensitive prostate cancer cells that normally have an intact glucuronidation pathway that rapidly conjugates and inactivates dihydrotestosterone and thereby limits androgen signaling, become glucuronidation deficient and resistant to androgen deprivation. Mechanistically, using CRISPR/Cas9-mediated gene ablation, we found that loss of UDP glucuronosyltransferase family 2 member B15 (UGT2B15) and UGT2B17 is sufficient to restore free dihydrotestosterone, sustained androgen signaling, and development of castration resistance. Furthermore, loss of glucuronidation enzymatic activity was also detectable with a nonsteroid glucuronidation substrate. Of note, glucuronidation-incompetent cells and the resultant loss of intracellular conjugated dihydrotestosterone were detectable in vivo by 18F-dihydrotestosterone PET. Together, these findings couple a mechanism with a functional imaging modality to identify impending castration resistance in prostate cancers.


Assuntos
Di-Hidrotestosterona/metabolismo , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/metabolismo , Testosterona/metabolismo , Animais , Linhagem Celular Tumoral , Di-Hidrotestosterona/química , Radioisótopos de Flúor , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Glicosilação , Humanos , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Receptores Androgênicos/fisiologia , Transdução de Sinais , Testosterona/química
12.
Int J Exp Pathol ; 100(5-6): 311-319, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-32043657

RESUMO

MicroRNAs are involved in the control of tumour progression and in metastatic cascade dynamics. However, the role of microRNAs in distant organ reorganization at the premetastatic stage is less clear, although the process of premetastatic niche formation is a crucial event according to modern concepts of tumour dissemination. The role of the present study was to investigate the expression levels of miR-155, miR-21, miR-205 and miR-let7b, as well as that of their target genes, in target organs of melanoma metastasis at the premetastatic stage. The expression levels of both the pro-oncogenic miR-155 and the tumour suppressive miR-205 were found to be altered in the premetastatic liver of melanoma B16-bearing mice. Bioinformatics analysis identified the target genes of miR-155 to be nuclear factor, erythroid 2 like 2 (NFE2L2), secretogranin II, miR-205, semaphorin 5A and vascular endothelial growth factor A (VEGFA). Among those, the redox status regulatory factor NFE2L2 was downregulated, which corresponded to increased levels of miR-155. Due to the ability of pro-oxidative events to initiate angiogenesis, VEGFA levels were evaluated in the premetastatic liver by immunohistochemistry, which revealed increased VEGFA expression in the central parts of the organ and diminished expression in the periphery. Taken together, these findings may support the concept of functional organ reorganization due to melanoma progression.


Assuntos
Biomarcadores Tumorais , Fígado/metabolismo , Melanoma Experimental/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/genética , Neoplasias Cutâneas/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Fígado/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estadiamento de Neoplasias , Distribuição Aleatória , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
13.
Bioorg Med Chem Lett ; 28(3): 382-387, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269214

RESUMO

Asialoglycoprotein receptor (ASGP-R) is a promising biological target for drug delivery into hepatoma cells. Nevertheless, there are only few examples of small-molecule conjugates of ASGP-R selective ligand equipped by a therapeutic agent for the treatment of hepatocellular carcinoma (HCC). In the present work, we describe a convenient and versatile synthetic approach to novel mono- and multivalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose and anticancer drug - paclitaxel (PTX). Several molecules have demonstrated high affinity towards ASGP-R and good stability under physiological conditions, significant in vitro anticancer activity comparable to PTX, as well as good internalization via ASGP-R-mediated endocytosis. Therefore, the conjugates with the highest potency can be regarded as a promising therapeutic option against HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Receptor de Asialoglicoproteína/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Galactose/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Galactose/análogos & derivados , Galactose/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , Paclitaxel/síntese química , Paclitaxel/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
14.
J Integr Neurosci ; 17(3-4): 377-390, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29154291

RESUMO

By means of EEG analysis the functional state of subjects with high and low levels of anxiety was studied in different periods preceding a cognitive task - a visual expression recognition. Several conditions were investigated: background/eyes closed; background/eyes opened; listening the instruction for the cognitive task; operative rest (time lapse between listening the instruction and the beginning of the task), as well as short intervals immediately preceding the exposition of target stimuli (stage of preparation) - pairs of faces pictures with identical or different emotional expressions. At all these pre-task stages high-anxiety subjects exhibited much lower amplitude values in alpha and theta bands (as compared with low-anxiety subjects). The most prominent differences were revealed in the phases of instruction listening and operative rest. These data could provide more precise electrophysiological markers of anxiety level in conditions preceeding cognitive task performance.


Assuntos
Antecipação Psicológica/fisiologia , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Personalidade/fisiologia , Adulto Jovem
15.
Brain ; 139(Pt 2): 509-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657517

RESUMO

Despite amyloid plaques, consisting of insoluble, aggregated amyloid-ß peptides, being a defining feature of Alzheimer's disease, their significance has been challenged due to controversial findings regarding the correlation of cognitive impairment in Alzheimer's disease with plaque load. The amyloid cascade hypothesis defines soluble amyloid-ß oligomers, consisting of multiple amyloid-ß monomers, as precursors of insoluble amyloid-ß plaques. Dissecting the biological effects of single amyloid-ß oligomers, for example of amyloid-ß dimers, an abundant amyloid-ß oligomer associated with clinical progression of Alzheimer's disease, has been difficult due to the inability to control the kinetics of amyloid-ß multimerization. For investigating the biological effects of amyloid-ß dimers, we stabilized amyloid-ß dimers by an intermolecular disulphide bridge via a cysteine mutation in the amyloid-ß peptide (Aß-S8C) of the amyloid precursor protein. This construct was expressed as a recombinant protein in cells and in a novel transgenic mouse, termed tgDimer mouse. This mouse formed constant levels of highly synaptotoxic soluble amyloid-ß dimers, but not monomers, amyloid-ß plaques or insoluble amyloid-ß during its lifespan. Accordingly, neither signs of neuroinflammation, tau hyperphosphorylation or cell death were observed. Nevertheless, these tgDimer mice did exhibit deficits in hippocampal long-term potentiation and age-related impairments in learning and memory, similar to what was observed in classical Alzheimer's disease mouse models. Although the amyloid-ß dimers were unable to initiate the formation of insoluble amyloid-ß aggregates in tgDimer mice, after crossbreeding tgDimer mice with the CRND8 mouse, an amyloid-ß plaque generating mouse model, Aß-S8C dimers were sequestered into amyloid-ß plaques, suggesting that amyloid-ß plaques incorporate neurotoxic amyloid-ß dimers that by themselves are unable to self-assemble. Our results suggest that within the fine interplay between different amyloid-ß species, amyloid-ß dimer neurotoxic signalling, in the absence of amyloid-ß plaque pathology, may be involved in causing early deficits in synaptic plasticity, learning and memory that accompany Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Transtornos Cognitivos/metabolismo , Plasticidade Neuronal/fisiologia , Placa Amiloide/metabolismo , Multimerização Proteica/fisiologia , Peptídeos beta-Amiloides/genética , Animais , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Placa Amiloide/genética , Placa Amiloide/patologia
16.
J Allergy Clin Immunol ; 138(2): 500-508.e24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27212086

RESUMO

BACKGROUND: Pruritus is a cardinal symptom of atopic dermatitis, and an increased cutaneous sensory network is thought to contribute to pruritus. Although the immune cell-IL-31-neuron axis has been implicated in severe pruritus during atopic skin inflammation, IL-31's neuropoietic potential remains elusive. OBJECTIVE: We sought to analyze the IL-31-related transcriptome in sensory neurons and to investigate whether IL-31 promotes sensory nerve fiber outgrowth. METHODS: In vitro primary sensory neuron culture systems were subjected to whole-transcriptome sequencing, ingenuity pathway analysis, immunofluorescence, and nerve elongation, as well as branching assays after IL-31 stimulation. In vivo we investigated the cutaneous sensory neuronal network in wild-type, Il31-transgenic, and IL-31 pump-equipped mice. RESULTS: Transgenic Il31 overexpression and subcutaneously delivered IL-31 induced an increase in the cutaneous nerve fiber density in lesional skin in vivo. Transcriptional profiling of IL-31-activated dorsal root ganglia neurons revealed enrichment for genes promoting nervous system development and neuronal outgrowth and negatively regulating cell death. Moreover, the growth cones of primary small-diameter dorsal root ganglia neurons showed abundant IL-31 receptor α expression. Indeed, IL-31 selectively promoted nerve fiber extension only in small-diameter neurons. Signal transducer and activator of transcription 3 phosphorylation mediated IL-31-induced neuronal outgrowth, and pharmacologic inhibition of signal transducer and activator of transcription 3 completely abolished this effect. In contrast, transient receptor potential cation channel vanilloid subtype 1 channels were dispensable for IL-31-induced neuronal sprouting. CONCLUSIONS: The pruritus- and TH2-associated novel cytokine IL-31 induces a distinct transcriptional program in sensory neurons, leading to nerve elongation and branching both in vitro and in vivo. This finding might help us understand the clinical observation that patients with atopic dermatitis experience increased sensitivity to minimal stimuli inducing sustained itch.


Assuntos
Interleucinas/metabolismo , Prurido/imunologia , Prurido/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Animais , Análise por Conglomerados , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Interleucinas/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fibras Nervosas/metabolismo , Fosforilação , Prurido/genética , Fator de Transcrição STAT3/metabolismo , Pele/imunologia , Pele/inervação , Pele/metabolismo
17.
Neural Plast ; 2015: 458123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821602

RESUMO

Age-related alterations in the expression of genes and corticostriatal synaptic plasticity were studied in the dorsal striatum of mice of four age groups from young (2-3 months old) to old (18-24 months of age) animals. A significant decrease in transcripts encoding neuronal nitric oxide (NO) synthase and receptors involved in its activation (NR1 subunit of the glutamate NMDA receptor and D1 dopamine receptor) was found in the striatum of old mice using gene array and real-time RT-PCR analysis. The old striatum showed also a significantly higher number of GFAP-expressing astrocytes and an increased expression of astroglial, inflammatory, and oxidative stress markers. Field potential recordings from striatal slices revealed age-related alterations in the magnitude and dynamics of electrically induced long-term depression (LTD) and significant enhancement of electrically induced long-term potentiation in the middle-aged striatum (6-7 and 12-13 months of age). Corticostriatal NO-dependent LTD induced by pharmacological activation of group I metabotropic glutamate receptors underwent significant reduction with aging and could be restored by inhibition of cGMP hydrolysis indicating that its age-related deficit is caused by an altered NO-cGMP signaling cascade. It is suggested that age-related alterations in corticostriatal synaptic plasticity may result from functional alterations in receptor-activated signaling cascades associated with increasing neuroinflammation and a prooxidant state.


Assuntos
Envelhecimento/genética , Expressão Gênica , Neostriado/fisiologia , Plasticidade Neuronal/genética , Óxido Nítrico/metabolismo , Transdução de Sinais/genética , Animais , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida , Proteínas de Fluorescência Verde , Masculino , Camundongos , Camundongos Transgênicos , Neostriado/enzimologia , Neostriado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/genética , Estresse Oxidativo/genética , Receptores de Dopamina D1/genética , Receptores de N-Metil-D-Aspartato/genética
18.
RNA ; 18(6): 1178-85, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22535590

RESUMO

Ribosomal RNA modification is accomplished by a variety of enzymes acting on all stages of ribosome assembly. Among rRNA methyltransferases of Escherichia coli, RsmD deserves special attention. Despite its minimalistic domain architecture, it is able to recognize a single target nucleotide G966 of the 16S rRNA. RsmD acts late in the assembly process and is able to modify a completely assembled 30S subunit. Here, we show that it possesses superior binding properties toward the unmodified 30S subunit but is unable to bind a 30S subunit modified at G966. RsmD is unusual in its ability to withstand multiple amino acid substitutions of the active site. Such efficiency of RsmD may be useful to complete the modification of a 30S subunit ahead of the 30S subunit's involvement in translation.


Assuntos
Proteínas de Escherichia coli/química , Metiltransferases/química , Substituição de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacocinética , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/farmacocinética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo
19.
Cell Mol Neurobiol ; 34(6): 777-89, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24798513

RESUMO

Breathing and vigilance are regulated by pH and CO2 levels in the central nervous system. The hypocretin/orexin (Hcrt/Orx)- and histamine (HA)-containing hypothalamic neurons synergistically control different aspects of the waking state. Acidification inhibits firing of most neurons but these two groups in the caudal hypothalamus are excited by hypercapnia and protons, similar to the chemosensory neurons in the brain stem. Activation of hypothalamic wake-on neurons in response to hypercapnia, seen with the c-Fos assay, is supported by patch-clamp recordings in rodent brain slices: Hcrt/Orx and HA neurons are excited by acidification in the physiological range (pH from 7.4 to 7.0). Multiple molecular mechanisms mediate wake-promoting effects of protons in HA neurons in the tuberomamillary nucleus (TMN): among them are acid-sensing ion channels, Na(+),K(+)-ATPase, group I metabotropic glutamate receptors (mGluRI). HA neurons are remarkably sensitive to the mGluRI agonist DHPG (threshold concentration 0.5 µM) and mGluRI antagonists abolish proton-induced excitation of HA neurons. Hcrt/Orx neurons are excited through block of a potassium conductance and release glutamate with their peptides in TMN. The two hypothalamic nuclei and the serotonergic dorsal raphe cooperate toward CO2/acid-induced arousal. Their interactions and molecular mechanisms of H(+)/CO2-induced activation are relevant for the understanding and treatment of respiratory and metabolic disorders related to sleep-waking such as obstructive sleep apnea and sudden infant death syndrome.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Potenciais de Ação/fisiologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Animais , Ácido Glutâmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Orexinas
20.
Nucleic Acids Res ; 40(16): 7885-95, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22649054

RESUMO

The functional centers of the ribosome in all organisms contain ribosomal RNA (rRNA) modifications, which are introduced by specialized enzymes and come at an energy cost for the cell. Surprisingly, none of the modifications tested so far was essential for growth and hence the functional role of modifications is largely unknown. Here, we show that the methyl groups of nucleosides m(2)G966 and m(5)C967 of 16S rRNA in Escherichia coli are important for bacterial fitness. In vitro analysis of all phases of translation suggests that the m(2)G966/m(5)C967 modifications are dispensable for elongation, termination and ribosome recycling. Rather, the modifications modulate the early stages of initiation by stabilizing the binding of fMet-tRNA(fMet) to the 30S pre-initiation complex prior to start-codon recognition. We propose that the m(2)G966 and m(5)C967 modifications help shaping the bacterial proteome, most likely by fine-tuning the rates that determine the fate of a given messenger RNA (mRNA) at early checkpoints of mRNA selection.


Assuntos
Metilação de DNA , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Iniciação Traducional da Cadeia Peptídica , RNA Ribossômico 16S/química , Temperatura Baixa , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica , Terminação Traducional da Cadeia Peptídica , RNA Ribossômico 16S/metabolismo , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA