Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2315013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476511

RESUMO

The ever-growing use of nature-derived materials creates exciting opportunities for novel development in various therapeutic biomedical applications. Living cells, serving as the foundation of nanoarchitectonics, exhibit remarkable capabilities that enable the development of bioinspired and biomimetic systems, which will be explored in this review. To understand the foundation of this development, we first revisited the anatomy of cells to explore the characteristics of the building blocks of life that is relevant. Interestingly, animal cells have amazing capabilities due to the inherent functionalities in each specialized cell type. Notably, the versatility of cell membranes allows red blood cells and neutrophils' membranes to cloak inorganic nanoparticles that would naturally be eliminated by the immune system. This underscores how cell membranes facilitate interactions with the surroundings through recognition, targeting, signalling, exchange, and cargo attachment. The functionality of cell membrane-coated nanoparticles can be tailored and improved by strategically engineering the membrane, selecting from a variety of cell membranes with known distinct inherent properties. On the other hand, plant cells exhibit remarkable capabilities for synthesizing various nanoparticles. They play a role in the synthesis of metal, carbon-based, and polymer nanoparticles, used for applications such as antimicrobials or antioxidants. One of the versatile components in plant cells is found in the photosynthetic system, particularly the thylakoid, and the pigment chlorophyll. While there are challenges in consistently synthesizing these remarkable nanoparticles derived from nature, this exploration begins to unveil the endless possibilities in nanoarchitectonics research.


We have highlighted the Cell-derived Nanomaterials for Biomedical Applications through the lenses of our team who have experiences with working on cell membrane, thylakoids, and studying the impact of nanoparticles on biological phenomenon such as nanomaterialsinduced endothelial leakiness (NanoEL). In this review, we have discussed the progress and the wide potential of nanoarchitectonics in plant systems, animal cells and microorganisms. Due to our unique backgrounds, our take on this topic may be the novelty of the review.

2.
Sci Technol Adv Mater ; 23(1): 199-224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370475

RESUMO

Like the proposal of nanotechnology by Richard Feynman, the nanoarchitectonics concept was initially proposed by Masakazu Aono. The nanoarchitectonics strategy conceptually fuses nanotechnology with other research fields including organic chemistry, supramolecular chemistry, micro/nanofabrication, materials science, and bio-related sciences, and aims to produce functional materials from nanoscale components. In this review article, bio-interactive nanoarchitectonics and two-dimensional materials and environments are discussed as a selected topic. The account gives general examples of nanoarchitectonics of two-dimensional materials for energy storage, catalysis, and biomedical applications, followed by explanations of bio-related applications with two-dimensional materials such as two-dimensional biomimetic nanosheets, fullerene nanosheets, and two-dimensional assemblies of one-dimensional fullerene nanowhiskers (FNWs). The discussion on bio-interactive nanoarchitectonics in two-dimensional environments further extends to liquid-liquid interfaces such as fluorocarbon-medium interfaces and viscous liquid interfaces as new frontiers of two-dimensional environments for bio-related applications. Controlling differentiation of stem cells at fluidic liquid interfaces is also discussed. Finally, a conclusive section briefly summarizes features of bio-interactive nanoarchitectonics with two-dimensional materials and environments and discusses possible future perspectives.

3.
Small ; 14(30): e1800922, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29968352

RESUMO

The majority of cancer mortality is associated with cancer metastasis. Epithelial-to-mesenchymal transition (EMT) is a process by which cells attain migratory and invasive properties, eventually leading to cancer metastasis. Here, it is shown that titanium dioxide nanoparticles (nano-TiO2 ), a common food additive, can induce the EMT process in colorectal cancer cells. Nano-TiO2 exposure is observed to activate transforming growth factor-ß (TGF-ß)/mitogen-activated protein kinase (MAPK) and wingless (Wnt) pathways, and drive the EMT process. Similarly, silica nanoparticles (nano-SiO2 ) and hydroxyapatite nanoparticles (nano-HA), as food-based additives, can be ingested and accumulated in the stomach, and are found to be able to induce the EMT progression. The implication of this work can be profound for colorectal cancer patients where these food additives may unknowingly and unnecessarily hasten the progression of their cancers.


Assuntos
Neoplasias Colorretais/patologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Nanopartículas/toxicidade , Titânio/toxicidade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Durapatita/toxicidade , Células Epiteliais/efeitos dos fármacos , Humanos , Modelos Biológicos , Invasividade Neoplásica , Dióxido de Silício/toxicidade , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
4.
ACS Nano ; 14(3): 3259-3271, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32049490

RESUMO

The cancer cell membrane contains an arsenal of highly specific homotypic moieties that can be used to recognize its own kind. These cell membranes are often used to coat spherical nanoparticles to enhance nanomedicines' targeting specificities and uptakes. A sphere, however, has only a point contact with a surface at any given time. It is shown here that, by retaining a flatter morphology of the cracked cell membrane through stiffening with in situ synthesized gold nanomaterials, an increased area of interaction could be maintained and hence improve upon the in vitro and in vivo homotypic targeting capabilities between cancer cell types. This enhancement is especially important in vivo as any nanomedicine with targeting moieties probably has a single pass at interacting with the target cell before subsequent system clearance. Possible future clinical applications may involve the usage of a patient's autologous tumor biopsy tissues, which are very limited in supply, and therefore ensuring that we capitalize on the entire collective surface area of the cancer cell membrane available becomes an important consideration in the design and delivery our cell membrane-derived nanomedicines.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Melanoma/tratamento farmacológico , Nanomedicina , Animais , Antibióticos Antineoplásicos/química , Membrana Celular/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Humanos , Melanoma/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Nanoestruturas/química , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA