Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34607353

RESUMO

The COVID-19 pandemic has highlighted the need to come out with quick interventional solutions that can now be obtained through the application of different bioinformatics software to actively improve the success rate. Technological advances in fields such as computer modeling and simulation are enriching the discovery, development, assessment and monitoring for better prevention, diagnosis, treatment and scientific evidence generation of specific therapeutic strategies. The combined use of both molecular prediction tools and computer simulation in the development or regulatory evaluation of a medical intervention, are making the difference to better predict the efficacy and safety of new vaccines. An integrated bioinformatics pipeline that merges the prediction power of different software that act at different scales for evaluating the elicited response of human immune system against every pathogen is proposed. As a working example, we applied this problem solving protocol to predict the cross-reactivity of pre-existing vaccination interventions against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Biologia Computacional , Simulação por Computador , Pandemias , SARS-CoV-2/imunologia , Software , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos
2.
BMC Bioinformatics ; 22(Suppl 14): 631, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384559

RESUMO

BACKGROUND: Decisions in healthcare usually rely on the goodness and completeness of data that could be coupled with heuristics to improve the decision process itself. However, this is often an incomplete process. Structured interviews denominated Delphi surveys investigate experts' opinions and solve by consensus complex matters like those underlying surgical decision-making. Natural Language Processing (NLP) is a field of study that combines computer science, artificial intelligence, and linguistics. NLP can then be used as a valuable help in building a correct context in surgical data, contributing to the amelioration of surgical decision-making. RESULTS: We applied NLP coupled with machine learning approaches to predict the context (words) owning high accuracy from the words nearest to Delphi surveys, used as input. CONCLUSIONS: The proposed methodology has increased the usefulness of Delphi surveys favoring the extraction of keywords that can represent a specific clinical context. It permits the characterization of the clinical context suggesting words for the evaluation process of the data.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/cirurgia , Processamento de Linguagem Natural , Aprendizado de Máquina
3.
Bioinformatics ; 36(22-23): 5553-5555, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325491

RESUMO

SUMMARY: Although several bioinformatics tools have been developed to examine signaling pathways, little attention has been given to ever long-distance crosstalk mechanisms. Here, we developed PETAL, a Python tool that automatically explores and detects the most relevant nodes within a KEGG pathway, scanning and performing an in-depth search. PETAL can contribute to discovering novel therapeutic targets or biomarkers that are potentially hidden and not considered in the network under study. AVAILABILITYAND IMPLEMENTATION: PETAL is a freely available open-source software. It runs on all platforms that support Python3. The user manual and source code are accessible from https://github.com/Pex2892/PETAL.

4.
BMC Bioinformatics ; 21(Suppl 17): 458, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33308139

RESUMO

BACKGROUND: In 2018, about 10 million people were found infected by tuberculosis, with approximately 1.2 million deaths worldwide. Despite these numbers have been relatively stable in recent years, tuberculosis is still considered one of the top 10 deadliest diseases worldwide. Over the years, Mycobacterium tuberculosis has developed a form of resistance to first-line tuberculosis treatments, specifically to isoniazid, leading to multi-drug-resistant tuberculosis. In this context, the EU and Indian DBT funded project STriTuVaD-In Silico Trial for Tuberculosis Vaccine Development-is supporting the identification of new interventional strategies against tuberculosis thanks to the use of Universal Immune System Simulator (UISS), a computational framework capable of predicting the immunity induced by specific drugs such as therapeutic vaccines and antibiotics. RESULTS: Here, we present how UISS accurately simulates tuberculosis dynamics and its interaction within the immune system, and how it predicts the efficacy of the combined action of isoniazid and RUTI vaccine in a specific digital population cohort. Specifically, we simulated two groups of 100 digital patients. The first group was treated with isoniazid only, while the second one was treated with the combination of RUTI vaccine and isoniazid, according to the dosage strategy described in the clinical trial design. UISS-TB shows to be in good agreement with clinical trial results suggesting that RUTI vaccine may favor a partial recover of infected lung tissue. CONCLUSIONS: In silico trials innovations represent a powerful pipeline for the prediction of the effects of specific therapeutic strategies and related clinical outcomes. Here, we present a further step in UISS framework implementation. Specifically, we found that the simulated mechanism of action of RUTI and INH are in good alignment with the results coming from past clinical phase IIa trials.


Assuntos
Biologia Computacional/métodos , Tuberculose/imunologia , Interface Usuário-Computador , Antituberculosos/uso terapêutico , Sistema Imunitário/imunologia , Isoniazida/uso terapêutico , Resultado do Tratamento , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/imunologia
5.
BMC Bioinformatics ; 19(Suppl 13): 385, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717649

RESUMO

BACKGROUND: DNA methylation is an epigenetic mechanism of genomic regulation involved in the maintenance of homeostatic balance. Dysregulation of DNA methylation status is one of the driver alterations occurring in neoplastic transformation and cancer progression. The identification of methylation hotspots associated to gene dysregulation may contribute to discover new prognostic and diagnostic biomarkers, as well as, new therapeutic targets. RESULTS: We present EpiMethEx (Epigenetic Methylation and Expression), a R package to perform a large-scale integrated analysis by cyclic correlation analyses between methylation and gene expression data. For each gene, samples are segmented according to the expression levels to select genes that are differentially expressed. This stratification allows to identify CG methylation probesets modulated among gene-stratified samples. Subsequently, the methylation probesets are grouped by their relative position in gene sequence to identify wide genomic methylation events statically related to genetic modulation. CONCLUSIONS: The beta-test study showed that the global methylation analysis was in agreement with scientific literature. In particular, this analysis revealed a negative association between promoter hypomethylation and overexpression in a wide number of genes. Less frequently, this overexpression was sustained by intragenic hypermethylation events.


Assuntos
Biologia Computacional/métodos , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Software , Ilhas de CpG/genética , Humanos , Melanoma/genética
6.
BMC Bioinformatics ; 20(Suppl 6): 504, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822272

RESUMO

BACKGROUND: Tuberculosis (TB) represents a worldwide cause of mortality (it infects one third of the world's population) affecting mostly developing countries, including India, and recently also developed ones due to the increased mobility of the world population and the evolution of different new bacterial strains capable to provoke multi-drug resistance phenomena. Currently, antitubercular drugs are unable to eradicate subpopulations of Mycobacterium tuberculosis (MTB) bacilli and therapeutic vaccinations have been postulated to overcome some of the critical issues related to the increase of drug-resistant forms and the difficult clinical and public health management of tuberculosis patients. The Horizon 2020 EC funded project "In Silico Trial for Tuberculosis Vaccine Development" (STriTuVaD) to support the identification of new therapeutic interventions against tuberculosis through novel in silico modelling of human immune responses to disease and vaccines, thereby drastically reduce the cost of clinical trials in this critical sector of public healthcare. RESULTS: We present the application of the Universal Immune System Simulator (UISS) computational modeling infrastructure as a disease model for TB. The model is capable to simulate the main features and dynamics of the immune system activities i.e., the artificial immunity induced by RUTI® vaccine, a polyantigenic liposomal therapeutic vaccine made of fragments of Mycobacterium tuberculosis cells (FCMtb). Based on the available data coming from phase II Clinical Trial in subjects with latent tuberculosis infection treated with RUTI® and isoniazid, we generated simulation scenarios through validated data in order to tune UISS accordingly to STriTuVaD objectives. The first case simulates the establishment of MTB latent chronic infection with some typical granuloma formation; the second scenario deals with a reactivation phase during latent chronic infection; the third represents the latent chronic disease infection scenario during RUTI® vaccine administration. CONCLUSIONS: The application of this computational modeling strategy helpfully contributes to simulate those mechanisms involved in the early stages and in the progression of tuberculosis infection and to predict how specific therapeutical strategies will act in this scenario. In view of these results, UISS owns the capacity to open the door for a prompt integration of in silico methods within the pipeline of clinical trials, supporting and guiding the testing of treatments in patients affected by tuberculosis.


Assuntos
Simulação por Computador , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Biologia Computacional , Humanos , Mycobacterium tuberculosis/imunologia , Software
7.
Front Med Technol ; 3: 719380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047949

RESUMO

We propose a Bayesian hierarchical method for combining in silico and in vivo data onto an augmented clinical trial with binary end points. The joint posterior distribution from the in silico experiment is treated as a prior, weighted by a measure of compatibility of the shared characteristics with the in vivo data. We also formalise the contribution and impact of in silico information in the augmented trial. We illustrate our approach to inference with in silico data from the UISS-TB simulator, a bespoke simulator of virtual patients with tuberculosis infection, and synthetic physical patients from a clinical trial.

8.
Cells ; 9(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121606

RESUMO

As of today, 20 disease-modifying drugs (DMDs) have been approved for the treatment of relapsing multiple sclerosis (MS) and, based on their efficacy, they can be grouped into moderate-efficacy DMDs and high-efficacy DMDs. The choice of the drug mostly relies on the judgment and experience of neurologists and the evaluation of the therapeutic response can only be obtained by monitoring the clinical and magnetic resonance imaging (MRI) status during follow up. In an era where therapies are focused on personalization, this study aims to develop a modeling infrastructure to predict the evolution of relapsing MS and the response to treatments. We built a computational modeling infrastructure named Universal Immune System Simulator (UISS), which can simulate the main features and dynamics of the immune system activities. We extended UISS to simulate all the underlying MS pathogenesis and its interaction with the host immune system. This simulator is a multi-scale, multi-organ, agent-based simulator with an attached module capable of simulating the dynamics of specific biological pathways at the molecular level. We simulated six MS patients with different relapsing-remitting courses. These patients were characterized based on their age, sex, presence of oligoclonal bands, therapy, and MRI lesion load at the onset. The simulator framework is made freely available and can be used following the links provided in the availability section. Even though the model can be further personalized employing immunological parameters and genetic information, we generated a few simulation scenarios for each patient based on the available data. Among these simulations, it was possible to find the scenarios that realistically matched the real clinical and MRI history. Moreover, for two patients, the simulator anticipated the timing of subsequent relapses, which occurred, suggesting that UISS may have the potential to assist MS specialists in predicting the course of the disease and the response to treatment.


Assuntos
Simulação por Computador/tendências , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/terapia , Progressão da Doença , Feminino , Humanos , Masculino , Esclerose Múltipla Recidivante-Remitente/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA