Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(4): 101986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38487020

RESUMO

Concerns about the social and economic collapse, high mortality rates, and stress on the healthcare system are developing due to the coronavirus onslaught in the form of various species and their variants. In the recent past, infections brought on by coronaviruses severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) as well as middle east respiratory syndrome coronavirus (MERS-CoV) have been reported. There is a severe lack of medications to treat various coronavirus types including MERS-CoV which is hazard to public health due to its ability for pandemic spread by human-to-human transmission. Here, we utilized sinapic acid (SA) against papain-like protease (PLpro), a crucial enzyme involved in MERS-CoV replication, because phytomedicine derived from nature has less well-known negative effects. The thermal shift assay (TSA) was used in the current study to determine whether the drug interact with the recombinant MERS-CoV PLpro. Also, inhibition assay was conducted as the hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of SA to determine the level of inhibition of the MERS-CoV PLpro. To study the structural binding efficiency Autodock Vina was used to dock SA to the MERS-CoV PLpro and results were analyzed using PyMOL and Maestro Schrödinger programs. Our results show a convincing interaction between SA and the MERS protease, as SA reduced MERS-CoV PLpro in a dose-dependent way IC50 values of 68.58 µM (of SA). The TSA showed SA raised temperature of melting to 54.61 °C near IC50 and at approximately 2X IC50 concentration (111.5 µM) the Tm for SA + MERS-CoV PLpro was 59.72 °C. SA was docked to MERS-CoV PLpro to identify the binding site. SA bound to the blocking loop (BL2) region of MERS-CoV PLpro interacts with F268, E272, V275, and P249 residues of MERS-CoV PLpro. The effectiveness of protease inhibitors against MERS-CoV has been established and SA is already known for broad range biological activity including antiviral properties; it can be a suitable candidate for anti-MERS-CoV treatment.

2.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108638

RESUMO

Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.


Assuntos
Transtorno do Espectro Autista , Humanos , Criança , Pré-Escolar , Interleucina-17/metabolismo , Regulação para Cima , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Receptores de Quimiocinas/metabolismo , Fatores de Transcrição/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , RNA Mensageiro/metabolismo
3.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003408

RESUMO

Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.


Assuntos
Transtorno do Espectro Autista , Interleucina-10 , Humanos , Camundongos , Animais , Interleucina-10/farmacologia , Chumbo/toxicidade , Transtorno do Espectro Autista/induzido quimicamente , Interleucina-9/farmacologia , Transdução de Sinais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Mensageiro , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838589

RESUMO

Dasatinib (DAS), a narrow-therapeutic index drug, Bcr-Abl, and Src family kinases multitarget inhibitor have been approved for chronic myelogenous leukemia (CML) and Ph-positive acute lymphocytic leukemia (Ph+ ALL). Apigenin (APG) has a long history of human usage in food, herbs, health supplements, and traditional medicine, and it poses low risk of damage. The concomitant use of APG containing herbs/foods and traditional medicine may alter the pharmacokinetics of DAS, that probably lead to possible herb-drug interactions. The pharmacokinetic interaction of APG pretreatment with DAS in rat plasma following single and co-oral dosing was successfully deliberated using the UPLC-MS/MS method. The in vivo pharmacokinetics and protein expression of CYP3A2, Pgp-MDR1, and BCPR/ABCG2 demonstrate that APG pretreatment has potential to drastically changed the DAS pharmacokinetics where escalation in the Cmax, AUC(0-t), AUMC(0-inf_obs), T1/2, Tmax, and MRT and reduction in Kel, Vd, and Cl significantly in rats pretreated with APG 40 mg/kg, thus escalating systemic bioavailability and increasing the rate of absorption via modulation of CYP3A2, Pgp-MDR1, and BCPR/ABCG2 protein expression. Therefore, the concomitant consumption of APG containing food or traditional herb with DAS may cause serious life-threatening drug interactions and more systematic clinical study on herb-drug interactions is required, as well as adequate regulation in herbal safety and efficacy.


Assuntos
Apigenina , Dasatinibe , Interações Ervas-Drogas , Animais , Ratos , Apigenina/farmacologia , Cromatografia Líquida , Dasatinibe/farmacocinética , Espectrometria de Massas em Tandem/métodos
5.
Saudi Pharm J ; 31(7): 1351-1359, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37333019

RESUMO

Fluoropyrimidine 5-fluorouracil (5-FU) is a DNA analogue broadly used in chemotherapy, though treatment-associated nephrotoxicity limits its widespread clinical use. Sinapic acid (SA) has potent antioxidant, anti-inflammatory, and anti-apoptotic effects, we investigated its protective effects against 5-FU-induced nephrotoxicity in a rat model. We designated four treatment groups each Group I (control) received five intraperitoneal saline injections (once daily) from days 17 to 21; Group II received five intraperitoneal injections of 5-FU (50 mg/kg/day) from days 17 to 21; Group III received an oral administration of SA (40 mg/kg) for 21 days and five intraperitoneal injections of 5-FU (50 mg/kg/day) from days 17 to 21; and Group IV received an oral administration of SA (40 mg/kg) for 21 days (n-six rats in each group). blood samples were collected on day 22 from each group. Animals were sacrificed and their kidneys removed, and instantly frozen. 5-FU caused oxidative stress, inflammation, and activation of the apoptotic pathway by upregulating Bax and Caspase-3 and downregulating Bcl-2. However, SA exposure reduced serum toxicity indicators, boosted antioxidant defences, and reduced kidney apoptosis, which was confirmed by histopathological analysis. Therefore, prophylactic administration of SA could inhibit 5-FU-induced renal injuries in rats via suppression of renal inflammation and oxidative stress, primarily through regulation of NF-κB and proinflammatory cytokines, inhibition of renal apoptosis, and restoration of tubular epithelial antioxidant activities and cytoprotective defences.

6.
Saudi Pharm J ; 31(11): 101819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37860687

RESUMO

Dasatinib (DAS) is a narrow therapeutic index drug and novel oral multitarget inhibitor of tyrosine kinase and approved for the first-line therapy for chronic myelogenous leukemia (CML) and Philadelphia chromosome (Ph + ) acute lymphoblastic leukemia (ALL). DAS, a known potent substrate of cytochrome (CYP) 3A, P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) and is subject to auto-induction. The dietary supplementation of sinapic acid (SA) or concomitant use of SA containing herbs/foods may alter the pharmacokinetics as well as pharmacodynamics of DAS, that may probably lead to potential interactions. Protein expression in rat hepatic and intestinal tissues, as well as the in vivo pharmacokinetics of DAS and the roles of CYP3 A2 and drug transporters Pgp-MDR1 and BCPR/ABCG2, suggested a likely interaction mechanism. The single dose of DAS (25 mg/kg) was given orally to rats with or without SA pretreatment (20 mg/kg p.o. per day for 7 days, n = 6). The plasma concentration of DAS was estimated by using Ultra-High-Performance Liquid Chromatography Mass spectrometry (UHPLC-MS/MS). The in vivo pharmacokinetics and protein expression study demonstrate that SA pretreatment has potential to alter the DAS pharmacokinetics. The increase in Cmax, AUC and AUMC proposes increase in bioavailability and rate of absorption via modulation of CYP3 A2, PgP-MDR1 and BCPR/ABCG2 protein expression. Thus, the concomitant use of SA alone or with DAS may cause serious life-threatening drug interactions.

7.
Cell Immunol ; 379: 104580, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872534

RESUMO

Multiple sclerosis (MS) is an immunopathological disease that causes demyelination and recurrent episodes of T cell-mediated immune attack in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is a well-established mouse model of MS. The roles of T cells in MS/EAE have been well investigated, but little is known about the role of CCR5+ cells. In the present study, we investigated whether treatment with DAPTA, a selective CCR5 antagonist, could modulate the progression of EAE in the SJL/J mice. EAE mice were treated with DAPTA (0.01 mg/kg) intraperitoneally daily from day 14 to day 42, and the clinical scores were evaluated. We further investigated the effects of DAPTA on IFN-γ-, TGF-ß-, IL-10-, IL-17A-, IL-22-, T-bet, STAT4-, RORγT-, AhR-, Smad3-, and Foxp3-expressing CCR5+ spleen cells using flow cytometry analysis. We further explored the effects of DAPTA on mRNA/protein expression of IFN-γ, IL-10, IL-17A, IL-22, TGF-ß, T-bet, STAT4, RORγT, AhR, Foxp3, and NF-H in the brain tissue. The severity of clinical scores decreased in DAPTA-treated EAE mice as compared to that in the EAE control mice. Moreover, the percentage of CCR5+IFN-γ+, CCR5+T-bet+, CCR5+STAT4+, CCR5+IL-17A+, CCR5+RORγt+, CCR5+IL-22+, and CCR5+AhR+ cells decreased while CCR5+TGF-ß+, CCR5+IL-10+, CCR5+Smad3+, and CCR5+Foxp3+ increased in DAPTA-treated EAE mice. Furthermore, DAPTA treatment significantly mitigated the EAE-induced expression of T-bet, STAT4, IL-17A, RORγT, IL-22, and AhR but upregulated Foxp3, IL-10, and NF-H expression in the brain tissue. Taken together, our data demonstrated that DAPTA could ameliorate EAE progression through the downregulation of the inflammation-related cytokines and transcription factors signaling, which may be useful for the clinical therapy of MS.


Assuntos
Encefalomielite Autoimune Experimental , Encefalomielite , Esclerose Múltipla , Animais , Antagonistas dos Receptores CCR5/uso terapêutico , Modelos Animais de Doenças , Encefalomielite/tratamento farmacológico , Fatores de Transcrição Forkhead , Inflamação/tratamento farmacológico , Interferon gama/metabolismo , Interleucina-10 , Interleucina-17 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Esclerose Múltipla/tratamento farmacológico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fator de Transcrição STAT4 , Fator de Crescimento Transformador beta
8.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364379

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV), belonging to the betacoronavirus genus can cause severe respiratory illnesses, accompanied by pneumonia, multiorgan failure, and ultimately death. CoVs have the ability to transgress species barriers and spread swiftly into new host species, with human-to-human transmission causing epidemic diseases. Despite the severe public health threat of MERS-CoV, there are currently no vaccines or drugs available for its treatment. MERS-CoV papain-like protease (PLpro) is a key enzyme that plays an important role in its replication. In the present study, we evaluated the inhibitory activities of doxorubicin (DOX) against the recombinant MERS-CoV PLpro by employing protease inhibition assays. Hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of DOX showed an IC50 value of 1.67 µM at 30 min. Subsequently, we confirmed the interaction between DOX and MERS-CoV PLpro by thermal shift assay (TSA), and DOX increased ΔTm by ~20 °C, clearly indicating a coherent interaction between the MERS-CoV PL protease and DOX. The binding site of DOX on MERS-CoV PLpro was assessed using docking techniques and molecular dynamic (MD) simulations. DOX bound to the thumb region of the catalytic domain of the MERS-CoV PLpro. MD simulation results showed flexible BL2 loops, as well as other potential residues, such as R231, R233, and G276 of MERS-CoV PLpro. Development of drug repurposing is a remarkable opportunity to quickly examine the efficacy of different aspects of treating various diseases. Protease inhibitors have been found to be effective against MERS-CoV to date, and numerous candidates are currently undergoing clinical trials to prove this. Our effort follows a in similar direction.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Papaína/química , Peptídeo Hidrolases/metabolismo , Reposicionamento de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo
9.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807383

RESUMO

Background: Ulcerative colitis (UC) is a long-term condition which results in inflammation and ulcers of the colon and rectum. The key indications of active disease are abdominal pain and diarrhea mixed with blood. Aims: We explore the underlying colon protective mechanism of sinapic acid (SA) against acetic acid (AA) induced ulcerative colitis in rats. The implications of inflammation, oxidative stress, and apoptosis are studied. Methodology: Twenty-four rats were distributed into four categories, normal control (NC), ulcerative colitis (UC), ulcerative Colitis with SA 40 mg/kg (SA 40 mg/kg + AA), and ulcerative colitis with prednisolone (PRDL 10 mg/kg + AA), and were pretreated orally with saline, saline and SA (40 mg/kg/day) or PRDL (10 mg/kg/day) respectively, for 7 days. UC was prompted by trans-rectal administration of 4% AA on the 5th day, colon tissues were surgically removed for gross morphology and histological inspection, oxidative stress, and inflammatory markers and immunoblot analysis of Bax, caspase-3, and Bcl-2. Results: Macroscopic and histological inspection demonstrated that both SA 40 mg/kg and PRDL (10 mg/kg/day) significantly ameliorates colonic injuries. In addition, both pretreatments significantly ameliorates AA-induced UC, oxidative stress, as indicated by suppressed malondialdehyde (MDA), nitric oxide (NO) levels and restoring antioxidant/oxidant balance as indicated by catalase and glutathione levels, suppressed inflammation via inhibiting cytokines TNF-α, IL-6, inflammatory markers MPO, PGE2, COX-2 and NF-κB and inhibiting the protein expression of Bax and caspase-3 apoptotic protein and increasing the anti-apoptotic protein, Bcl-2 thereby inhibiting apoptosis. Conclusion: Sinapic acid significantly ameliorates AA induced UC in rats by suppressing inflammation, oxidative stress, and apoptosis in colonic tissues which exhibits its potential for the management of UC.


Assuntos
Colite Ulcerativa , Ácido Acético/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/metabolismo , Ácidos Cumáricos , Inflamação/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteína X Associada a bcl-2/metabolismo
10.
Environ Toxicol ; 36(7): 1261-1268, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33720507

RESUMO

The present research has been investigated to study the protective outcomes of sinapic acid (SA) against methotrexate (MTX) encouraged liver damage in rats by modulating the Nrf2/HO-1 and NF-κB signaling pathways. The animals were arbitrarily allocated into four groups: group I rats administered a 0.5% carboxymethyl cellulose (CMC) vehicle orally for 15 consecutive days with a single intravenous standard saline injection (0.9% NaCl) on day seven. Groups II, III, and IV were injected intraperitoneally with 20 mg MTX/kg on 7th day. Animals in group III and IV were treated orally for 14 days with 20 mg of SA/kg dissolved daily in 0.5% CMC respectively. In all experimental groups, liver function, biochemical, histopathological and molecular changes were evaluated. MTX-induced changes in liver function indices like ALT, AST, and ALP are substantially restored with SA pretreatment. Moreover, antioxidant defense mechanisms (GSH, SOD, and CAT) and oxidative/nitrostative stress (MDA and NO) and inflammatory cytokine (TNF-α, IL-ß and MPO) were also substantially restored. Furthermore, the conclusions indicate that SA prevents the hepatic damage caused by MTX through apoptosis inhibition and stimulation of Nrf2/HO-1-medial antioxidant enzymes by NF-κB inhibition. Histological findings have shown that SA therapy has greatly protected liver damage caused by MTX.


Assuntos
Apoptose , Metotrexato , Animais , Ácidos Cumáricos/metabolismo , Fígado/metabolismo , Metotrexato/metabolismo , Metotrexato/toxicidade , Estresse Oxidativo , Ratos
11.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805933

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease mainly affecting the synovial joints. A highly potent antagonist of C-C chemokine receptor 5 (CCR5), maraviroc (MVC), plays an essential role in treating several infectious diseases but has not yet been evaluated for its potential effects on RA development. This study focused on evaluating the therapeutic potential of MVC on collagen-induced arthritis (CIA) in DBA/1J mice. Following CIA induction, animals were treated intraperitoneally with MVC (50 mg/kg) daily from day 21 until day 35 and evaluated for clinical score and histopathological changes in arthritic inflammation. We further investigated the effect of MVC on Th9 (IL-9, IRF-4, and GATA3) and Th17 (IL-21R, IL-17A, and RORγT) cells, TNF-α, and RANTES in CD8+ T cells in the spleen using flow cytometry. We also assessed the effect of MVC on mRNA and protein levels of IL-9, IL-17A, RORγT, and GATA3 in knee tissues using RT-PCR and western blot analysis. MVC treatment in CIA mice attenuated the clinical and histological severity of inflammatory arthritis, and it substantially decreased IL-9, IRF4, IL-21R, IL-17A, RORγT, TNF-α, and RANTES production but increased GATA3 production in CD8+ T cells. We further observed that MVC treatment decreased IL-9, IL-17A, and RORγt mRNA and protein levels and increased those of GATA3. This study elucidates the capacity of MVC to ameliorate the clinical and histological signs of CIA by reducing pro-inflammatory responses, suggesting that MVC may have novel therapeutic uses in the treatment of RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Maraviroc/farmacologia , Receptores CCR5/imunologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Citocinas/imunologia , Fator de Transcrição GATA3/imunologia , Masculino , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Células Th17/imunologia , Células Th17/patologia , Receptor Toll-Like 9/imunologia
12.
Arch Virol ; 161(5): 1101-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26801790

RESUMO

Drug resistance mutations in the Pol gene of human immunodeficiency virus 1 (HIV-1) are one of the critical factors associated with antiretroviral therapy (ART) failure in HIV-1 patients. The issue of resistance to reverse transcriptase inhibitors (RTIs) in HIV infection has not been adequately addressed in the Indian subcontinent. We compared HIV-1 reverse transcriptase (RT) gene sequences to identify mutations present in HIV-1 patients who were ART non-responders, ART responders and drug naive. Genotypic drug resistance testing was performed by sequencing a 655-bp region of the RT gene from 102 HIV-1 patients, consisting of 30 ART-non-responding, 35 ART-responding and 37 drug-naive patients. The Stanford HIV Resistance Database (HIVDBv 6.2), IAS-USA mutation list, ANRS_09/2012 algorithm, and Rega v8.02 algorithm were used to interpret the pattern of drug resistance. The majority of the sequences (96 %) belonged to subtype C, and a few of them (3.9 %) to subtype A1. The frequency of drug resistance mutations observed in ART-non-responding, ART-responding and drug-naive patients was 40.1 %, 10.7 % and 20.58 %, respectively. It was observed that in non-responders, multiple mutations were present in the same patient, while in responders, a single mutation was found. Some of the drug-naive patients had more than one mutation. Thymidine analogue mutations (TAMs), however, were found in non-responders and naive patients but not in responders. Although drug resistance mutations were widely distributed among ART non-responders, the presence of resistance mutations in the viruses of drug-naive patients poses a big concern in the absence of a genotyping resistance test.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , Adulto , Idoso , Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/genética , Feminino , Infecções por HIV/virologia , Transcriptase Reversa do HIV/efeitos dos fármacos , HIV-1/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Filogenia , Análise de Sequência de DNA , Falha de Tratamento , Adulto Jovem
13.
J Appl Genet ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478327

RESUMO

BACKGROUND: Breast cancer, a genetically intricate disease with diverse subtypes, exhibits heightened incidence globally. In this study, we aimed to investigate blood-based microRNAs (miRNAs) as potential biomarkers for breast cancer. The primary objectives were to explore the role of miRNAs in cancer-related processes, assess their differential expression between breast cancer patients and healthy individuals, and contribute to a deeper understanding of the molecular underpinnings of breast cancer. METHODS: MiRNA extraction was performed on 40 breast cancer patients and adjacent normal tissues using a commercial RNA isolation kit. Total RNA quantification and quality assessment were conducted with advanced technologies. MiRNA profiling involved reverse transcription, labeling, and hybridization on Agilent human miRNA arrays (V2). Bioinformatics analysis utilized the DIANA system for target gene prediction and the DIANA-mirPath tool for pathway enrichment analysis. Selected miRNAs underwent validation through quantitative real-time PCR. RESULTS: Principal component analysis revealed overlapping miRNA expression patterns in primary and malignant breast tumors, underscoring the genetic complexity involved. Statistical analysis identified 54 downregulated miRNAs in malignant tumors and 38 in primary tumors compared to controls. Bioinformatics analysis implicated several pathways, including Wnt, TGF-b, ErbB, and MAPK signaling. Validation through qRT-PCR confirmed altered expression of hsa-miR-130a, hsa-miR-21, hsa-miR-223, and hsa-let-7c key miRNAs, highlighting their significance in breast cancer. The results from microarray were further validated by qPCR and the expression of which are downregulated in breast cancer was detected. CONCLUSION: This study provides significant insights into distinct miRNA expression patterns in normal and malignant breast tissues. The overlapping miRNA profiles in primary and malignant tumors underscore the complexity of genetic regulation in breast cancer. The identification of deregulated miRNAs and affected pathways contributes to our understanding of breast cancer pathogenesis. The validated miRNAs hold potential as diagnostic and prognostic markers, offering avenues for further clinical exploration in breast cancer research.

14.
J Appl Genet ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085436

RESUMO

Prostate-specific membrane antigen (PSMA) is a protein frequently found to be overexpressed in various non-prostate cancer types. Our investigation, based on data from the TCGA databases, revealed a wide range of differential PSMA (encoded by FOLH1 gene) mRNA expressions across several cancer types, with notable findings in triple-negative breast carcinoma. This preclinical study delves into the molecular underpinnings of utilizing PSMA-targeting radiopharmaceuticals within specific breast cancer subtypes. We conducted a transcriptomic expression analysis of PSMA across different subtypes of breast cancer, focusing particularly on the triple-negative breast cancer (TNBC) subset. Our analysis encompassed 1100 patients from The Cancer Genome Atlas dataset. We observed a broad distribution of PSMA mRNA expressions across various subgroups within these cancer types. Notably, a subset of triple-negative breast cancer exhibited higher PSMA mRNA expression compared to non-triple-negative breast cancer. Intriguingly, we found that higher PSMA mRNA expression was associated with favorable outcomes in terms of distant metastasis-free and relapse-free survival in patients. Within a subset of TNBC patients, there is a prevalent overexpression of PSMA, which appears to be linked with improved relapse-free and distant metastasis-free survival. Our study succinctly highlights the significance of PSMA overexpression in TNBC and its potential impact on patient outcomes and provides a clear and concise overview of the study's contributions to breast cancer research.

15.
ACS Omega ; 8(12): 11100-11117, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008160

RESUMO

We attempted to develop green nanoemulsions (ENE1-ENE5) using capryol-C90 (C90), lecithin, Tween 80, and N-methyl-2-pyrrolidone (NMP). HSPiP software and experimentally obtained data were used to explore excipients. ENE1-ENE5 nanoemulsions were prepared and evaluated for in vitro characterization parameters. An HSPiP based QSAR (quantitative structure-activity relationship) module established a predictive correlation between the Hansen solubility parameter (HSP) and thermodynamic parameters. A thermodynamic stability study was conducted under stress conditions of temperature (from -21 to 45 °C) and centrifugation. ENE1-ENE5 were investigated for the influence of size, viscosity, composition, and exposure time on emulsification (5-15 min) on %RE (percent removal efficiency). Eventually, the treated water was evaluated for the absence of the drug using electron microscopy and optical emission spectroscopy. HSPiP program predicted excipients and established the relationship between enoxacin (ENO) and excipients in the QSAR module. The stable green nanoemulsions ENE-ENE5 possessed the globular size range of 61-189 nm, polydispersity index (PDI) of 0.1-0.53, viscosity of 87-237 cP, and ζ potential from -22.1 to -30.8 mV. The values of %RE depended upon the composition, globular size, viscosity, and exposure time. ENE5 showed %RE value as 99.5 ± 9.2% at 15 min of exposure time, which may be due to the available maximized adsorption surface. SEM-EDX (scanning electron microscopy-X-ray dispersive energy mode) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) negated the presence of ENO in the treated water. These variables were critical factors for efficient removal of ENO during water treatment process design. Thus, the optimized nanoemulsion can be a promising approach to treat water contaminated with ENO (a potential pharmaceutical antibiotics).

16.
Front Bioeng Biotechnol ; 11: 1149588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025362

RESUMO

Background: Bacterial infections and cancers may cause various acute or chronic diseases, which have become serious global health issues. This requires suitable alternatives involving novel and efficient materials to replace ineffective existing therapies. In this regard, graphene composites are being continuously explored for a variety of purposes, including biomedical applications, due to their remarkable properties. Methods: Herein, we explore, in-vitro, the different biological properties of highly reduced graphene oxide (HRG), including anti-cancer, anti-bacterial, and anti-biofilm properties. Furthermore, to analyze the interactions of graphene with proteins of microbes, in silico docking analysis was also carried out. To do this, HRG was prepared using graphene oxide as a precursor, which was further chemically reduced to obtain the final product. The as-prepared HRG was characterized using different types of microscopic and spectroscopic techniques. Results: The HRG revealed significant cytotoxic ability, using a dose-dependent anti-cell proliferation approach, which substantially killed human breast cancer cells (MCF-7) with IC50 of 29.51 ± 2.68 µg/mL. The HRG demonstrated efficient biological properties, i.e., even at low concentrations, HRG exhibited efficient anti-microbial properties against a variety of microorganisms. Among the different strains, Gram-positive bacteria, such as B. subtilis, MRSA, and S. aureus are more sensitive to HRG compared to Gram-negative bacteria. The bactericidal properties of HRG are almost similar to a commercially available effective antibiotic (ampicillin). To evaluate the efficacy of HRG against bacterial biofilms, Pseudomonas aeruginosa and MRSA were applied, and the results were compared with gentamycin and ampicillin, which are commonly applied standard antibiotics. Notably, HRG demonstrated high inhibition (94.23%) against P.aeruginosa, with lower MIC (50 µg/mL) and IC50 (26.53 µg/mL) values, whereas ampicillin and gentamicin showed similar inhibition (90.45% and 91.31% respectively) but much higher MIC and IC50 values. Conclusion: Therefore, these results reveal the excellent biopotential of HRG in different biomedical applications, including cancer therapy; antimicrobial activity, especially anti-biofilm activity; and other biomedicine-based therapies. Based on the molecular docking results of Binding energy, it is predicted that pelB protein and HRG would form the best stable docking complex, and high hydrogen and hydrophobic interactions between the pelB protein and HRG have been revealed. Therefore, we conclude that HRG could be used as an antibiofilm agent against P. aeruginosa infections.

17.
ACS Omega ; 8(44): 41755-41764, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970055

RESUMO

A nanoemulsion-based polyherbal mouthwash (PHFX) of Curcuma longa hydroalcoholic extract was developed and evaluated for its antibacterial effects against a variety of Gram-positive and Gram-negative oral pathogens in comparison to standard chlorhexidine acetate (CHD-A) (positive control). Various nanoemulsion-based mouthwashes of C. longa extract were produced using an aqueous phase titration approach via construction of pseudoternary phase diagrams. The developed nanoemulsion-based PHFX was studied for thermodynamic stability tests. Selected formulations (PHFX1-PHFX5) were characterized physicochemically for droplet diameter, polydispersity index (PDI), refractive index (RI), transmittance, and pH. The drug release studies were performed using the dialysis method. Based on the minimum droplet diameter (26.34 nm), least PDI (0.132), optimal RI (1.337), maximum %T (99.13), optimal pH (6.45), and maximum cumulative drug release (98.2%), formulation PHFX1 (containing 0.5% w/w of C. longa extract, 1.5% w/w of clove oil, 7.0% w/w of Tween-80, 7.0% w/w of Transcutol-HP, and 84.0% w/w of water) was selected for antimicrobial studies in comparison to standard CHD-A. The antibacterial effects and minimum inhibitory concentration were studied against various Gram-positive oral pathogens such as Streptococcus mutans, Staphylococcus aureus, Streptococcus pneumoniae, and Bacillus subtilis and Gram-negative oral pathogens such as Escherichia coli and Klebsiella pneumoniae. The antibacterial effects of PHFX1 were found to be significant over standard CHD-A against most Gram-positive and Gram-negative oral pathogens. The antimicrobial studies showed that the formulation PHFX1 was effective against all oral pathogens even at 3- to 4-fold lower working concentrations. These findings indicated the potential of nanoemulsion-based mouthwash in the treatment of a variety of oral pathogen infections.

18.
Int J Pharm ; 648: 123593, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956722

RESUMO

Based on our previous report, the study was extended to investigate the impact of miconazole nitrate (MCN) loaded cationic/anionic nanoemulsions and nanoemulsion gels on permeation behaviour across artificial-membrane, EpiDerm, and rat skin. Nanoemulsions and gels were evaluated for size, charge, viscosity, size-distribution, pH, and percent entrapment efficiency (%EE). In vitro drug diffusion across artificial membrane and EpiDerm were conducted to get diffusion coefficients. Permeation profiles were studied using rat skin to investigate mechanistic insight of formulated mediated permeation followed by CLSM (confocal laser scanning microscopy), SEM (scanning electron microscopy), AFM (atomic force microscopy), and irritation studies. Results showed that MCNE11-Rh (probed cationic nanoemulsion at pH âˆ¼ 7.2) and MNE11-Rh (probed anionic nanoemulsion at pH âˆ¼ 7.2) showed size values of 158 nm and 145 nm, respectively whereas MCNE11-GR (probed cationic nanoemulsion gel at pH âˆ¼ 6.8) and MNE11-GR (probed anionic nanoemulsion gel at pH âˆ¼ 6.8) exhibited size values 257 nm and 243 nm, respectively. The %EE values were found to be as 91.5 % and 89.6 % for MCNE11-Rh and MNE11-Rh, respectively. The gels (∼6000 cP) elicited relatively high viscosity than nanoemulsions (∼3300 - 3500 cP). MCNE11-GR showed the highest values of permeation flux, diffusion rate, diffusion coefficient (D), and permeation coefficient (P) across artificial membrane, EpiDerm, and rat skin which may be attributed to three potential factors (cationic charge, composition, and hydration by the hydrophilic gel) working in tandem. Transepidermal water loss (TEWL) by the MCNE11-GR was maximum (14.4 g/m2h) than control (6.1 g/m2h) indicating augmented interaction of MCNE11-Rh with skin components. Conclusively, cationic nanoemulsion gel was promising carrier for enhanced permeation and the drug access to the dermal region to treat deep seated fungal infections.


Assuntos
Membranas Artificiais , Miconazol , Ratos , Animais , Administração Cutânea , Pele , Géis/química , Emulsões/química , Tamanho da Partícula
19.
Biomedicines ; 11(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37371605

RESUMO

Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients. This study aimed to evaluate the therapeutic potential of DAPTA, a selective C-C chemokine receptor 5 (CCR5) antagonist in the murine model of MS, and to expand the knowledge of its mechanism of action. Following the induction of EAE, DAPTA was administrated (0.01 mg/kg, i.p.) daily from day 14 to day 42. We investigated the effects of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α in CD40+ spleen B cells using flow cytometry. Furthermore, we also analyzed the effect of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α mRNA expression levels using qRT-PCR in brain tissue. EAE mice treated with DAPTA showed substantial reductions in NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α but an increase in the IκBα of CD40+ B lymphocytes. Moreover, EAE mice treated with DAPTA displayed decreased NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α and but showed increased IκBα mRNA expression levels. This study showed that DAPTA has significant neuroprotective potential in EAE via the downregulation of inflammatory mediators and NF-κB/Notch signaling. Collectively, DAPTA might have potential therapeutic targets for use in MS treatment.

20.
Eur J Pharmacol ; 959: 176086, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832863

RESUMO

Experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS), provides significant insights into the mechanisms that initiate and drive autoimmunity. MS is a chronic autoimmune disease of the central nervous system, characterized by inflammatory infiltration associated with demyelination. T lymphocyte cells play a crucial role in MS, whereas natural T regulatory (nTreg) cells prevent autoimmune inflammation by suppressing lymphocyte activity. This study sought to investigate the role of PD98059, a selective MAP kinase inhibitor, in Th1, Th9, Th17, and nTreg cells using the SJL/J mouse model of EAE. Following EAE development, the mice were intraperitoneally administered PD98059 (5 mg/kg for two weeks) daily. We evaluated the effects of PD98059 on Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγT), and nTreg (FoxP3 and Helios) cells in the spleen using flow cytometry. Moreover, we explored the effects of PD98059 on the IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγT, FoxP3, and Helios mRNA and protein levels in brain tissues using qRT-PCR and Western blot analyses. PD98059 treatment significantly decreased the proportion of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, CD4+RORγT+, CD4+IL-17A+, and CD4+RORγT+ cells while increasing that of CD4+FoxP3+ and CD4+Helios+ cells. In addition, PD98059 administration decreased the mRNA and protein levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, and RORγT but increased those of FoxP3 and Helios in the brain tissue of EAE mice. Our findings suggest that PD98059 corrects immune dysfunction in EAE mice, which is concurrent with the modulation of multiple signaling pathways.


Assuntos
Antineoplásicos , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/complicações , Interleucina-17/genética , Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Interleucina-9/metabolismo , Interleucina-9/farmacologia , Modelos Animais de Doenças , Antineoplásicos/farmacologia , RNA Mensageiro/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células Th17 , Camundongos Endogâmicos C57BL , Células Th1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA