Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150834

RESUMO

Arabidopsis contains 34 genes for glycosylphosphatidylinositol (GPI)-anchored LTPg proteins. A motif analysis has placed these into four groups. With one exception, all are produced with a signal peptide and are most likely attached to the cell membrane via the GPI anchor. Several of the LTPg genes across the four groups are downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii. We have here studied At3g22600 encoding LTPg5, which is the most strongly downregulated LTPg gene. It is mainly expressed in roots, and a promoter::GUS line was used to confirm the downregulation in syncytia and also showed downregulation in galls of the root knot nematode Meloidogyne incognita. In contrast, infection with bacteria (Pseudomonas syringae) and fungi (Botrytis cinerea) led to the induction of the gene in leaves. This diverse regulation of LTPg5 indicated a role in resistance, which we confirmed with overexpression lines and a T-DNA mutant. The overexpression lines were more resistant to both nematode species and to P. syringae and B. cinerea, while a knock-out mutant was more susceptible to H. schachtii and P. syringae. Thus, LTPg5 encoded by At3g22600 is part of the Arabidopsis resistance mechanism against pathogens. LTPg5 has probably no direct antimicrobial activity but could perhaps act by associating with a receptor-like kinase, leading to the induction of defense genes such as PR1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Bactérias/patogenicidade , Fungos/patogenicidade , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Tylenchoidea/patogenicidade , Animais , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosilfosfatidilinositóis/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia
2.
Int J Mol Sci ; 20(2)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669499

RESUMO

Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals like wheat and barley. These nematodes alone are estimated to reduce production of crops by 10% globally. This necessitates a huge enhancement of nematode resistance in cereal crops against CCNs. Nematode resistance in wheat and barley in combination with higher grain yields has been a preferential research area for cereal nematologists. This usually involved the targeted genetic exploitations through natural means of classical selection breeding of resistant genotypes and finding quantitative trait luci (QTLs) associated with resistance genes. These improvements were based on available genetic diversity among the crop plants. Recently, genome-wide association studies have widely been exploited to associate nematode resistance or susceptibility with particular regions of the genome. Use of biotechnological tools through the application of various transgenic strategies for enhancement of nematode resistance in various crop plants including wheat and barley had also been an important area of research. These modern approaches primarily include the use of gene silencing, exploitation of nematode effector genes, proteinase inhibitors, chemodisruptive peptides and a combination of one or more of these approaches. Furthermore, the perspective genome editing technologies including CRISPR-Cas9 could also be helpful for improving CCN resistance in wheat and barley. The information provided in this review will be helpful to enhance resistance against CCNs and will attract the attention of the scientific community towards this neglected area.


Assuntos
Resistência à Doença , Hordeum/parasitologia , Interações Hospedeiro-Parasita , Nematoides , Doenças das Plantas/parasitologia , Triticum/parasitologia , Adaptação Biológica , Agricultura/economia , Animais , Edição de Genes , Inativação Gênica , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Locos de Características Quantitativas , Fatores de Risco
3.
PLoS One ; 17(11): e0275497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36346788

RESUMO

Irrigation using sewage water can be beneficial, as it can increase the productivity of crops but has negative consequences on crops, soil contamination, and human health. It contains a variety of toxins, such as chemicals and heavy metals, which damage the soil and crops. In this regard, the aim of the research was to assess the potential health hazards of iron (Fe) metal in food crops (leafy and root crops) treated with wastewater (T_1), canal water (T_2), and tube well water (T_3). Water, soil, and edible components of food crops were collected at random from three distinct locations. Fe concentration in samples was estimated using atomic absorption spectrophotometer, following wet digestion method. The Fe concentrations, ranged from 0.408 to 1.03 mg/l in water, 31.55 to 187.47 mgkg-1 in soil and 4.09 to 32.583 mgkg-1 in crop samples; which were within permissible limits of the World Health Organization (WHO). There was a positive correlation between soils and crops. The bioconcentration factor, enrichment factor (EF), daily intake of metals (DIM), health risk index (HRI), and target hazard quotient (THQ) all values were <1, except for a pollution load index >1, which indicated soil contamination, but there was no Fe toxicity in crops, no health risk, and no-carcinogenic risk for these food crops in humans. To prevent the excessive accumulation of Fe metal in the food chain, regular monitoring is needed.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Solo , Águas Residuárias , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Ferro , Monitoramento Ambiental , Medição de Risco , Metais Pesados/análise , Produtos Agrícolas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA