Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202400808, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881249

RESUMO

The abietane-type diterpenoids are among the most significant diterpene subsets found in hundreds of plant species belonging to various families. Among which, the members of the genus Salvia and Euphorbia are rich in abietane diterpenoids. Because of the chemical diversity and notable bioactivities, such as anticancer, antiinflammatory, antimicrobial, and antioxidant activities, abietane-type diterpenoids are attractive. Herein, recent advances in the isolation and characterization of abietane-type diterpenoids from natural sources, as well as their biological activities, from 2015 up to 2024 are reviewed. During this time, over 300 abietane diterpenoids with diverse structures have been discovered.

2.
Mol Biol Rep ; 49(9): 8251-8258, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36002657

RESUMO

Cytotoxic activities of methanolic crude extract of Stachys parviflora (Lamiaceae family) and its sub-fractions were primarily evaluated against human breast adenocarcinoma (MCF-7 and MDA-MB-231) and prostate (PC3) cell lines. The methanolic extract exhibited the highest activity, and was chosen for the isolation procedure. Four diterpenoid quinones, namely miltirone [1], tanshinone IIA [2], 1-hydroxy-tanshinone IIA [3], and cryptotanshinone [4] were isolated. Notably, this is the first report on the isolation and/or characterization of the mentioned diterpenoids from the Stachys genus. In this study, 1-hydroxy-tanshinone IIA [3] displayed the highest cytotoxicity among the isolated compounds. The mechanism of the cytotoxicity of methanolic extract and isolated compounds was further investigated by the utilization of propidium iodide staining (PI) assay. The results showed that the methanolic extract and 1-hydroxy-tanshinone IIA [3] enhanced DNA fragmentation in PC3 and MCF-7 cells. Moreover, the western blotting analysis demonstrated increasing and decreasing protein levels of Bax and Bcl2, respectively, and cleaved poly ADP-ribose polymerase (PARP). Further bioassay-guided phytochemical assessments of S. parviflora can be suggested as a promising approach for discovering potent bioactive secondary metabolites.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias da Mama , Diterpenos , Stachys , Abietanos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Diterpenos/farmacologia , Humanos , Masculino , Próstata
3.
Phytother Res ; 36(1): 73-84, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34528309

RESUMO

The endoplasmic reticulum (ER) is the place where proteins and lipids are biosynthesized and where transmembrane proteins are folded. Both pathological and physiological situations may disturb the function of the ER, resulting in ER stress. Under stress conditions, the cells initiate a defensive procedure known as the unfolded protein response (UPR). Cases of severe stress lead to autophagy and/or the induction of cell apoptosis. Many studies implicate ER stress as a major factor contributing to many diseases. Therefore, the modulation of ER stress pathways has become an attractive therapeutic target. Quercetin is a plant-derived metabolite belonging to the flavonoids class which presents a range of beneficial effects including anti-inflammatory, cardioprotective, anti-oxidant, anti-obesity, anti-carcinogenic, anti-atherosclerotic, anti-diabetic, anti-hypercholesterolemic, and anti-apoptotic activities. Quercetin also has anti-cancer activity, and can be used as an adjuvant to decrease resistance to cancer chemotherapy. Furthermore, the effect of quercetin can be increased with the help of nanotechnology. This review discusses the role of quercetin in the modulation of ER stress (and related diseases) and provides novel evidence for the beneficial use of quercetin in therapy.


Assuntos
Estresse do Retículo Endoplasmático , Quercetina , Apoptose , Retículo Endoplasmático/metabolismo , Quercetina/farmacologia , Resposta a Proteínas não Dobradas
4.
Phytother Res ; 36(1): 33-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34532918

RESUMO

Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Produtos Biológicos/farmacologia , Plantas
5.
Chem Biodivers ; 19(6): e202200025, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35621714

RESUMO

Several species of the genus Eucalyptus are used in many traditional medicine systems for the treatment of respiratory tract infections, colds, flu, sore throats, and bronchitis. The genus Eucalyptus (Myrtaceae) is a well-known natural source of bioactive phloroglucinols. These polyphenolic compounds bear an aromatic phenyl ring with three hydroxy groups (1,3,5-trihydroxybenzene) which have been exhibiting a variety of biological activities such as antimicrobial, anticancer, anti-allergic, anti-inflammatory, and antioxidant activities. This review summarizes the literature published from 1997 until the end of 2021 and addresses the structure diversity of phloroglucinols isolated from Eucalyptus species and their biological activities. Phloroglucinol-terpene adducts are the main class of compounds that have been reported in this genus.


Assuntos
Eucalyptus , Myrtaceae , Eucalyptus/química , Medicina Tradicional , Floroglucinol/química , Extratos Vegetais/química
6.
Phytother Res ; 35(7): 3732-3746, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33724576

RESUMO

Natural products have been of much interest in research studies owing to their wide pharmacological applications, chemical diversity, low side effects, and multitarget activities. Examples of these compounds include matrine, sulforaphane, silibinin, curcumin, berberin, resveratrol, and quercetin. Some of the present anticancer drugs, such as taxol, vincristine, vinblastine, and doxorubicin are also derived from natural products. The anti-carcinogenic effects of these products are partly mediated through modulation of microRNA-21 (miR-21) expression. To date, numerous downstream targets of miR-21 have been recognized, which include phosphatase and tensin homolog (PTEN), ras homolog gene family member B (RHOB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), programmed cell death 4 (PDCD4), signal transducer and activator of transcription (STAT)-3, and nuclear factor kappa B (NF-κB) pathways. These signaling pathways, their regulation by oncomiR-21 in cancer, and the modulating impact of natural products are the main focus of this review.


Assuntos
Produtos Biológicos , MicroRNAs , Neoplasias , Proteínas Reguladoras de Apoptose/metabolismo , Produtos Biológicos/farmacologia , Humanos , MicroRNAs/genética , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína rhoB de Ligação ao GTP/metabolismo
7.
J Cell Physiol ; 234(5): 5643-5654, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30239005

RESUMO

Autophagy is a self-degradative process that plays a pivotal role in several medical conditions associated with infection, cancer, neurodegeneration, aging, and metabolic disorders. Its interplay with cancer development and treatment resistance is complicated and paramount for drug design since an autophagic response can lead to tumor suppression by enhancing cellular integrity and tumorigenesis by improving tumor cell survival. In addition, autophagy denotes the cellular ability of adapting to stress though it may end up in apoptosis activation when cells are exposed to a very powerful stress. Induction of autophagy is a therapeutic option in cancer and many anticancer drugs have been developed to this aim. Curcumin as a hydrophobic polyphenol compound extracted from the known spice turmeric has different pharmacological effects in both in vitro and in vivo models. Many reports exist reporting that curcumin is capable of triggering autophagy in several cancer cells. In this review, we will focus on how curcumin can target autophagy in different cellular settings that may extend our understanding of new pharmacological agents to overcome relevant diseases.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Autofagia/efeitos dos fármacos , Curcumina/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
8.
Pharmacol Res ; 146: 104335, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31265891

RESUMO

The endoplasmic reticulum (ER), a cellular organelle with multiple functions, plays an important role in several biological processes including protein folding, secretion, lipid biosynthesis, calcium homeostasis, and cellular stress. Accumulation of misfolded or unfolded proteins in the ER makes cells undergo a stress response known as the unfolded protein response (UPR). UPR is initially protective. However, prolonged and severe ER stress can lead to autophagy and/or the induction of apoptosis in stressed cell. Many studies have demonstrated that ER stress and the UPR are involved in different diseases such as neurodegenerative diseases, cancer, osteoporosis, diabetes, and inflammatory diseases. Curcumin, a natural polyphenol, has well documented evidence supporting its numerous biological properties including antioxidant, anti-inflammatory, immune-modulatory, anti-microbial, anti-ischemic, anti-angiogenesis, neuroprotective, hepatoprotective, nephroprotective, anti-atherogenic and anti-diabetic activities. In this review, the role of ER stress in several pathological condition and the potential protective effects of curcumin are discussed.


Assuntos
Curcumina/farmacologia , Curcumina/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Animais , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
9.
Microb Pathog ; 109: 39-44, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28526637

RESUMO

Chemical composition and biological (antimicrobial, antioxidant and cytotoxic) activities of essential oils (EO) obtained from the aerial parts of Glycyrrhiza triphylla Fisch. & C.A.Mey (G. triphylla) were evaluated in the present study. The EO was isolated and analyzed using gas chromatography-mass spectrometry (GC-MS). Fifty-five compounds representing 99.3% of the total oil composition were identified. Major components of the oil were ß-caryophyllene (25.4%), limonene (16.7%), ß-myrcene (16.0%) and α-humulene (4.4%). The oil composition was dominated by the presence of sesquiterpene hydrocarbons comprising 43.6% of the total oil. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the oil were determined against eight bacterial strains and one fungus. The EO showed a good antibacterial activity against both Gram-positive and Gram-negative bacteria. The most susceptible strain was Micrococcus luteus (MIC = 2.7 µg/mL, MBC = 43.6 µg/mL). The antioxidant potential of the EO was examined using DPPH and ß-carotene/linoleic acid (BCB) assays. The oil was considerably active in the DPPH assay (IC50 = 100.40 ± 0.03 µg/mL). Moreover, in vitro cytotoxic activity was assessed against six cancer cell lines using MTT assay. The EO showed no significant cytotoxic activity. In light of the present findings, G. triphylla oil may deserves to be further investigated for its potential therapeutic effects and also as a natural preservative in food industry.


Assuntos
Glycyrrhiza/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Monoterpenos Acíclicos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cicloexenos/química , Cicloexenos/isolamento & purificação , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Irã (Geográfico) , Limoneno , Camundongos , Testes de Sensibilidade Microbiana , Sesquiterpenos Monocíclicos , Monoterpenos/química , Monoterpenos/isolamento & purificação , Células NIH 3T3 , Óleos Voláteis/química , Extratos Vegetais/química , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/farmacologia , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Terpenos/química , Terpenos/isolamento & purificação , beta Caroteno/química , beta Caroteno/isolamento & purificação
10.
J Asian Nat Prod Res ; 16(8): 884-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24852499

RESUMO

7-Prenyloxycoumarins are a group of secondary metabolites found mainly in plants belonging to the families Rutaceae and Apiaceae. Auraptene, umbelliprenin (UM), and 7-isopentenyloxycoumarin are some examples of prenylated coumarins. UM occurs in various edible plant species including celery, coriander, angelica, lemon, and particularly, Ferula species. Although UM was isolated more than 50 years ago, its biological activities have been studied since the last two decades. Besides anticancer activities, biological activities including anti-inflammatory, antioxidant, and antileishmanial activities have been reported from this natural compound. The present mini-review deals with the biological activities and mechanism of actions reported for UM.


Assuntos
Apiaceae/química , Rutaceae/química , Umbeliferonas/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Cumarínicos/química , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Leishmania major/efeitos dos fármacos , Estrutura Molecular , Umbeliferonas/química , Umbeliferonas/isolamento & purificação
11.
Nat Prod Res ; : 1-5, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579282

RESUMO

The genus Delphinium is a rich source of diterpene alkaloids. Chemical investigation on an alkaloid rich extract of the whole parts of Delphinium turkmenum resulted in the isolation of three C19-diterpene alkaloids (1-3) and a palmitic acid derivative (4). The chemical structures were elucidated by analysis of 1D and 2D-NMR and comparison the data with those reported in the literature. Notably, all isolated compounds were reported for the first time from D. turkmenum.

12.
BMC Complement Med Ther ; 24(1): 135, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549139

RESUMO

BACKGROUND: Natural products are one of the best candidates for controlling drug-resistant pathogens, the advantages of which include low production costs and low side effects. In this study, as potential antimicrobials, the anti-bacterial and antibiofilm activities of several Iranian native medicinal plants were screened. METHODS: The antibacterial/antifungal and anti-biofilm activities of 18 medicinal plants including Reseda lutea L., Nepeta sintenisii Bunge., Stachys turcomanica Trautv., Stachys lavandulifolia Vahl, Diarthron antoninae (Pobed.) Kit Tan., Ziziphora clinopodioides Lam., Euphorbia kopetdaghi Prokh, Euphorbia serpens Kunth., Hymenocrater calycinus Benth., Scutellaria pinnatifida A.Ham., Viola tricolor L., Hypericum helianthemoides (Spach) Boiss., Hypericum scabrum L., Convolvulus lineatus L., Scabiosa rotata M.Bieb Greuter & Burdet, Delphinium semibarbatum Bien. Ex Boiss., Glycyrrhiza triphylla Fisch. & C.A.Mey., and Ziziphus jujuba Mill., against two Gram-positive bacteria, Staphylococcus aureus, Bacillus cereus, as well as two Gram-negative bacteria, Pseudomonas aeruginosa, Escherichia coli; and Candida albicans as a fungal strain, were evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values of the extracts against tested microorganisms were reported and we investigated their effect on the biofilm inhibition of Pseudomonas aeruginosa PAO1, Staphylococcus epidermis, Staphylococcus aureus and Streptococcus mutans. In addition, the effect of the extracts on the eradication of the biofilms of these bacteria was evaluated. RESULTS: In this study, H. scabrum was found to exhibit potentially significant activity against Gram-positive bacteria with the MIC range of 6.25-25 µg/mL. This extract also showed a significant effect on inhibiting the biofilm of S. aureus, S. mutans, and S. epidermidis and eradicating the biofilm of S. epidermidis DSMZ 3270. In addition, Hymenocrater calycinus root extract had moderate antibacterial activity against B. cereus with the MIC and MBC 62.5 µg/mL, respectively. CONCLUSIONS: The results of this study showed that the root extracts of two plants, Hypericum scabrum and Hymenocrater calycinus, had antimicrobial and anti-biofilm effects. Based on the observed anti-biofilm effects, these two plants may be considered in future studies to find responsible antimicrobial compounds.


Assuntos
Anti-Infecciosos , Plantas Medicinais , Irã (Geográfico) , Staphylococcus aureus , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Biofilmes , Candida albicans , Pseudomonas aeruginosa , Streptococcus mutans
13.
Nat Prod Bioprospect ; 14(1): 28, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727781

RESUMO

Acetophenones are naturally occurring phenolic compounds which have found in over 24 plant families and also fungi strains. They are exist in both free or glycosides form in nature. The biological activities of these compounds have been assayed and reported including cytotoxicity, antimicrobial, antimalarial, antioxidant and antityrosinase activities. Herein, we review the chemistry and biological activity of natural acetophenone derivatives that have been isolated and identified until January 2024. Taken together, it was reported 252 acetophenone derivatives in which the genera Melicope (69) and Acronychia (44) were the principal species as producers of acetophenones.

14.
Fitoterapia ; 173: 105838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296165

RESUMO

Four previously unreported diterpenoids including three ent-atisanes (1-3) and one ent-abietane (4), along with one known linear triterpenoid (5) and five known diterpenoids including four myrsinanes (6-9), and one abietane (10) have been isolated from the roots of Euphorbia spinidens Bornm. ex Prokh. The structures were determined on the basis of extensive spectroscopic analyses including HR-ESI-MS, 1D and 2D NMR and comparison of the data with those reported in the literature. Antimicrobial potential of isolated compounds were also evaluated. Guionianol B (10) showed good antibacterial activity against Staphylococcus aureus and Bacillus subtilis with MIC value of 6.25 µg/mL.


Assuntos
Diterpenos , Euphorbia , Triterpenos , Abietanos/química , Estrutura Molecular , Euphorbia/química , Triterpenos/farmacologia , Diterpenos/farmacologia , Diterpenos/química , Espectroscopia de Ressonância Magnética , Raízes de Plantas/química
15.
Iran J Basic Med Sci ; 26(7): 753-759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396944

RESUMO

Objectives: Acute kidney injury can be associated with serious consequences and therefore early treatment is critical to decreasing mortality and morbidity rate. We evaluated the effect of montmorillonite, the clay with strong cation exchange capacity, on the AKI model in rats. Materials and Methods: Glycerol (50% solution, 10 ml/kg) was injected in the rat hind limbs to induce AKI. 24 hr after induction of acute kidney injury, the rats received oral doses of montmorillonite (0.5 g/kg or 1 g/kg), or sodium polystyrene sulfonate (1 g/kg) for three consecutive days. Results: Glycine induced acute kidney injury in rats with high levels of urea (336.60± 28.19 mg/dl), creatinine (4.10± 0.21 mg/dl), potassium (6.15 ± 0.28 mEq/L), and calcium (11.52 ± 0.19 mg/dl). Both doses of montmorillonite (0.5 and 1 g/kg) improved the serum urea (222.66± 10.02 and 170.20±8.06, P<0.05), creatinine (1.86±0.1, 2.05± 0.11, P<0.05), potassium (4.68 ± 0.4, 4.73 ± 0.34, P<0.001) and calcium (11.15 ± 0.17, 10.75 ± 0.25, P<0.01) levels. Treatment with montmorillonite especially at a high dose reduced the kidney pathological findings including, tubular necrosis, amorphous protein aggregation, and cell shedding into the distal and proximal tubule lumen. However, administration of SPS could not significantly decrease the severity of damages. Conclusion: According to the results of this study, as well as the physicochemical properties of montmorillonite, such as high ion exchange capacity and low side effects, montmorillonite can be a low-cost and effective treatment option to reduce and improve the complications of acute kidney injury. However, the efficacy of this compound in human and clinical studies needs to be investigated.

16.
Recent Adv Food Nutr Agric ; 14(2): 126-133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539928

RESUMO

BACKGROUND: Sesamum indicum L. (sesame) is one of the most widely used herbs in the world. Sesame oil contains lignans such as sesamin and sesamolin, which are known to possess anti-inflammatory, antioxidant, and anti-apoptotic properties. Parkinson's disease (PD) is recognized as the most common neurodegenerative disease after Alzheimer's disease; however, the exact molecular mechanism of the progression of neural death is not clear yet. In this study, the effect of sesame seed extracts and their main bioactive components (sesamin and sesamolin) on in vitro model of Parkinson's disease has been compared. METHODS: Cell viability, the number of reactive oxygen species (ROS), and apoptosis were determined using resazurin assay, ROS assay, propidium iodide (PI) staining and flow cytometry, and western blot analysis. RESULTS: 6-OHDA caused cellular death and apoptosis but pretreatment with sesame seed extracts, sesamin, and sesamolin significantly increased cell viability (p<0.001) and decreased ROS (p<0.001) and apoptosis. ERK1/2 is activated by 6-OHDA in PC12 cells, and the level of survivin decreased. Pretreatment with sesame significantly reversed the entire cell death induced by 6- OHDA. Sesame seed extracts at 5 and 10 µg/ml, sesamin and sesamolin at 5 and 10 µM increased surviving (p<0.01), and reduced P-ERK1/2/ERK1/2 (p<0.05) levels close to the control values. CONCLUSIONS: Overall, compounds in sesame seed extract and sesamin may assist as adjuvant therapeutics in PD. It seems sesame seeds have more potent protection effects against neural death compared with individual components, which might reflect the synergism among different phytochemicals present in the extract.


Assuntos
Lignanas , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Sesamum , Animais , Ratos , Sesamum/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Células PC12 , Espécies Reativas de Oxigênio , Lignanas/farmacologia , Apoptose , Extratos Vegetais/farmacologia
17.
Curr Mol Med ; 23(9): 863-875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35980063

RESUMO

Treatment of neurological disorders has always been one of the challenges facing scientists due to poor prognosis and symptom overlap, as well as the progress of the disease process. Neurological disorders such as Huntington's, Parkinson's, Alzheimer's diseases, and Amyotrophic Lateral Sclerosis are very debilitating. Therefore, finding a biomarker is essential for early diagnosis and treatment goals. Recent studies have focused more on molecular factors and gene manipulation to find effective diagnostic and therapeutic biomarkers. Among these factors, microRNAs (miRNAs/ miRs) have attracted much attention. On the other hand, a growing correlation between miRNAs and neurological disorders has caused scientists to consider it as a diagnostic and therapeutic target. In this line, the miR-153 is one of the most important and highly conserved miRNAs in mice and humans, whose expression level is not only altered in neurological disorders but also improves neurogenesis. MiR-153 can regulate multiple biological processes by targeting various factors. Furthermore, the miR-153 expression also can be regulated by important regulators, such as long non-coding RNAs (e.g., KCNQ1OT1) and some compounds (e.g., Tanshinone IIA) altering the expression of miR-153. Given the growing interest in miR-153 as a biomarker and therapeutic target for neurological diseases as well as the lack of comprehensive investigation of miR-153 function in these disorders, it is necessary to identify the downstream and upstream targets and also it's potential as a therapeutic biomarker target. In this review, we will discuss the critical role of miR-153 in neurological disorders for novel diagnostic and prognostic purposes and its role in multi-drug resistance.


Assuntos
Doença de Alzheimer , Fenômenos Biológicos , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurogênese , Biomarcadores
18.
Mini Rev Med Chem ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694782

RESUMO

Naphthoquinones (NQs) are small molecules bearing two carbonyl groups. They have been the subject of much research due to their significant biological activities such as antiproliferative, antimicrobial, anti-inflammatory, antioxidant, and antimalarial effects. NQs are produced mainly by bacteria, fungi and higher plants. Among them, microorganisms are a treasure of NQs with diverse skeletons and pharmacological properties. The purpose of the present study is to provide a comprehensive update on the structural diversity and biological activities of 91 microbial naphthoquinones isolated from 2015 to 2022, with a special focus on antimicrobial and cytotoxic activities. During this period, potent cytotoxic NQs such as naphthablin B (46) and hygrocin C (30) against HeLa (IC50=0.23 µg/ml) and MDA-MB-431 (IC50=0.5 µg/ml) cell lines was reported, respectively. In addition, rubromycin CA1 (39), exhibited strong antibacterial activity against Staphylococcus aureus (MIC of 0.2 µg/ml). As importance bioactive compounds, NQs may open new horizon for treatment of cancer and drug resistant bacteria. As such, it is hoped that this review article may stimulates further research into the isolation of further NQs from microbial, and other sources as well as the screening of such compounds for biological activity and beneficial uses.

19.
Phytochemistry ; 197: 113130, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35183568

RESUMO

Plant endophytes have been considered as novel sources of naturally occurring compounds with various biological activities, including cytotoxic, antimicrobial, anti-inflammatory, anticancer, herbicides, antileishmanial and antioxidant. A variety of specialised products, comprising terpenoids, alkaloids, polyketides, phenolic compounds, coumarins, and quinone derivatives have been reported from various strains. An increasing number of products, especially terpenoids, are being isolated from endophytes. Herein, the isolated new terpenoids from plant endophytic fungi, their hosts, as well as biological activities, from January 2011 until the end of 2020 are reviewed. In this period, 516 terpenoids are classified into monoterpenes (5), sesquiterpenes (299), diterpenes (76), sesterterpens (22), meroterpenes (83), triterpenes (29), and other terpenoids (2), were isolated from different plant endophytic fungi species.


Assuntos
Antineoplásicos , Terpenos , Endófitos , Fungos , Plantas , Terpenos/farmacologia
20.
Nat Prod Res ; 36(23): 6096-6100, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35227157

RESUMO

Seven sesquiterpene lactones, chlorophyssopifolin E (1), aguerin B (2), repdiolide triol (3), solistitiolide (4), aitchisonolide (5), sinicin B (6), cynaropicrin (7), along with four lignans arctigenin (8), arctiin (9), matairesinol (10), and matairesinoside (11) were isolated for the first time from the aerial parts of Cousinia turkmenorum Bornm. Among the isolated compounds, aguerin B (2) showed the most cytotoxic activity against MCF7 cell lines with IC50 value of 18.9 µM. Findings of this study could be useful for the development of new anticancer agents from nature.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Asteraceae , Lignanas , Sesquiterpenos , Linhagem Celular Tumoral , Extratos Vegetais , Sesquiterpenos/farmacologia , Lactonas/farmacologia , Compostos Fitoquímicos , Lignanas/farmacologia , Antineoplásicos Fitogênicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA