Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Sci Technol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958382

RESUMO

With the annual global electricity production exceeding 30,000 TWh, the safe transmission of electric power has been heavily relying on SF6, the most potent industrial greenhouse gas. While promising SF6 alternatives have been proposed, their compatibilities with materials used in gas-insulated equipment (GIE) must be thoroughly studied. This is particularly true as the emerging SF6 alternatives generally leverage their relatively higher reactivity to achieve lower global warming potentials (GWPs). Here, a high-throughput compatibility screening of common GIE materials was conducted with a representative SF6 alternative, namely, C4F7N (2,3,3,3-tetrafluoro-2-(trifluoromethyl)propanenitrile)/CO2 gas mixtures. In this screening, the insulation performance of C4F7N/CO2 gas mixtures, as an indicator of the C4F7N/materials compatibility level, was periodically monitored during the thermal aging with tens of materials from SF6-insulated GIE, including desiccants/adsorbents, rubber, plastics, composites, ceramics, metals, etc. The identification of incompatible materials and the follow-up mechanism studies suggested that the acidity of materials represents the primary cause for C4F7N/materials incompatibility when C4F7N/CO2 gas mixtures are used as a drop-in replacement solution for existing SF6-insulated apparatuses. Mitigation strategies tackling the acidity of materials were then proposed and validated. Additionally, the amphoteric characteristics of C4F7N were briefly discussed. This work provides insight into the materials incompatibility of SF6 alternatives, along with validated mitigation strategies, for the selection and design of materials used in future eco-friendly GIE.

2.
Acc Chem Res ; 53(12): 2913-2924, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33170638

RESUMO

ConspectusMultimetallic nanomaterials containing noble metals (NM) and non-noble 3d-transition metals (3d-TMs) exhibit unique catalytic properties as a result of the synergistic combination of NMs and 3d-TMs in the nanostructure. The exploration of such a synergy depends heavily on the understanding of the atomic-scale structural details of NMs and 3d-TMs in the nanomaterials. This has attracted a great deal of recent interest in the field of catalysis science, especially concerning the core-shell and alloy nanostructures. A rarely asked question of fundamental significance is how the core-shell and alloy structural arrangements of atoms in the multimetallic nanomaterials dynamically change under reaction conditions, including reaction temperature, surface adsorbate, chemical environment, applied electrochemical potential, etc. The dynamic evolution of the core-shell/alloy structures under the reaction conditions plays a crucial role in the catalytic performance of the multimetallic nanocatalysts.This Account focuses on the dynamic structure characteristics for several different types of composition-tunable alloy and core-shell nanomaterials, including phase-segregated, elemental-enriched, dynamically evolved, and structurally different core-shell structures. In addition to outlining core-shell/alloy structure formation via processes such as seed-mediated growth, thermochemical calcination, adsorbate-induced evolution, chemical dealloying, underpotential deposition/galvanic displacement, etc., this Account will highlight the progress in understanding the dynamic core-shell/alloy structures under chemical or catalytic reaction conditions, which has become an important focal point of the research fronts in catalysis and electrocatalysis. The employment of advanced techniques, especially in situ/operando synchrotron high-energy X-ray diffraction and pair distribution function analyses, has provided significant insights into the dynamic evolution processes of NM/3d-TM nanocatalysts under electrocatalytic or fuel cell operating conditions. Examples will highlight Pt- or Pd-based nanoparticles and nanowires alloyed with various 3d-TMs with a focus on their structural evolution under reaction conditions. While the dynamic process is complex, the ability to gain an insight into the evolution of core-shell and alloy structures under the catalytic reaction condition is essential for advancing the design of multimetallic nanocatalysts. This Account serves as a springboard from fundamental understanding of the core-shell and alloy structural dynamics to the various applications of nanostructured catalysts/electrocatalysts, especially in the fronts of energy and environmental sustainability.

3.
J Am Chem Soc ; 142(3): 1287-1299, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31885267

RESUMO

The ability to control the surface composition and morphology of alloy catalysts is critical for achieving high activity and durability of catalysts for oxygen reduction reaction (ORR) and fuel cells. This report describes an efficient surfactant-free synthesis route for producing a twisty nanowire (TNW) shaped platinum-iron (PtFe) alloy catalyst (denoted as PtFe TNWs) with controllable bimetallic compositions. PtFe TNWs with an optimal initial composition of ∼24% Pt are shown to exhibit the highest mass activity (3.4 A/mgPt, ∼20 times higher than that of commercial Pt catalyst) and the highest durability (<2% loss of activity after 40 000 cycles and <30% loss after 120 000 cycles) among all PtFe-based nanocatalysts under ORR or fuel cell operating conditions reported so far. Using ex situ and in situ synchrotron X-ray diffraction coupled with atomic pair distribution function (PDF) analysis and 3D modeling, the PtFe TNWs are shown to exhibit mixed face-centered cubic (fcc)-body-centered cubic (bcc) alloy structure and a significant lattice strain. A striking finding is that the activity strongly depends on the composition of the as-synthesized catalysts and this dependence remains unchanged despite the evolution of the composition of the different catalysts and their lattice constants under ORR or fuel cell operating conditions. Notably, dealloying under fuel cell operating condition starts at phase-segregated domain sites leading to a final fcc alloy structure with subtle differences in surface morphology. Due to a subsequent realloying and the morphology of TNWs, the surface lattice strain observed with the as-synthesized catalysts is largely preserved. This strain and the particular facets exhibited by the TNWs are believed to be responsible for the observed activity and durability enhancements. These findings provide new insights into the correlation between the structure, activity, and durability of nanoalloy catalysts and are expected to energize the ongoing effort to develop highly active and durable low-Pt-content nanowire catalysts by controlling their alloy structure and morphology.

4.
Small ; 14(20): e1800598, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29665220

RESUMO

The ability to harness the optical or electrical properties of nanoscale particles depends on their assembly in terms of size and spatial characteristics which remains challenging due to lack of size focusing. Electrons provide a clean and focusing agent to initiate the assembly of nanoclusters or nanoparticles. Here an intriguing route is demonstrated to lace gold nanoclusters and nanoparticles in string assembly through electron-initiated nucleation and aggregative growth of Au(I)-thiolate motifs on a thin film substrate. This size-focused assembly is demonstrated by controlling the electron dose under transmission electron microscopic imaging conditions. The Au(I)-thiolate motifs, in combination with the molecularly mediated alignment, facilitate the interstring electrostatic and intrastring aurophilic interactions, which functions as a molecular template to aid electron-initiated 1D lacing. The findings demonstrate a hierarchical route for the 1D assemblies with size and spatial tunable catalytic, optical, sensing, and diagnostic properties.

5.
J Am Chem Soc ; 138(37): 12166-75, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27617338

RESUMO

The ability for tuning not only the composition but also the type of surface facets of alloyed nanomaterials is important for the design of catalysts with enhanced activity and stability through optimizing both ensemble and ligand effects. Herein we report the first example of ultrathin platinum-gold alloy nanowires (PtAu NWs) featuring composition-tunable and (111) facet-dominant surface characteristics, and the electrocatalytic enhancement for the oxygen reduction reaction (ORR). PtAu NWs of different bimetallic compositions synthesized by a single-phase and surfactant-free method are shown to display an alloyed, parallel-bundled structure in which the individual nanowires exhibit Boerdijk-Coxeter helix type morphology predominant in (111) facets. Results have revealed intriguing catalytic correlation with the binary composition, exhibiting an activity maximum at a Pt:Au ratio of ∼3:1. As revealed by high-energy synchrotron X-ray diffraction and atomic pair distribution function analysis, NWs of this ratio exhibit a clear shrinkage in interatomic bonding distances. In comparison with PtAu nanoparticles of a similar composition and degree of shrinking of atomic-pair distances, the PtAu NWs display a remarkably higher electrocatalytic activity and stability. The outperformance of NWs over nanoparticles is attributed to the predominant (111)-type facets on the surface balancing the contribution of ensemble and ligand effects, in addition to the composition synergy due to optimal adsorption energies for molecular and atomic oxygen species on the surface as supported by DFT computation of models of the catalysts. The findings open up a new pathway to the design and engineering of alloy nanocatalysts with enhanced activity and durability.

6.
Anal Chem ; 87(21): 10698-702, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26479337

RESUMO

This report describes new findings of an investigation of a bifunctional nanocomposite probe for the detection of cancer biomarkers, demonstrating the viability of magnetic focusing and SERS detection in a microfluidic platform. The nanocomposite probe consists of a magnetic nickel-iron core and a gold shell. Upon bioconjugation, the nanoprobes are magnetically focused on a specific spot in a microfluidic channel, enabling an enrichment of "hot spots" for surface enhanced Raman scattering detection of the targeted carcinoembryonic antigen. The detection sensitivity, with a limit of detection of ∼0.1 pM, is shown to scale with the magnetic focusing time and the nanoparticle size. The latter is also shown to exhibit an excellent agreement between the experimental data and the theoretical simulation. Implications of the findings to the development of rapid and sensitive microfluidic detection of cancer biomarkers are also discussed.


Assuntos
Biomarcadores Tumorais/análise , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Nanocompostos/química , Análise Espectral Raman , Biomarcadores Tumorais/química , Humanos , Tamanho da Partícula
7.
Small ; 11(35): 4509-16, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26037089

RESUMO

The ability to tune gauge factors in terms of magnitude and orientation is important for wearable and conformal electronics. Herein, a sensor device is described which is fabricated by assembling and printing molecularly linked thin films of gold nanoparticles on flexible microelectrodes with unusually high and anisotropic gauge factors. A sharp difference in gauge factors up to two to three orders of magnitude between bending perpendicular (B(⊥)) and parallel (B(||)) to the current flow directions is observed. The origin of the unusual high and anisotropic gauge factors is analyzed in terms of nanoparticle size, interparticle spacing, interparticle structure, and other parameters, and by considering the theoretical aspects of electron conduction mechanism and percolation pathway. A critical range of resistivity where a very small change in strain and the strain orientation is identified to impact the percolation pathway in a significant way, leading to the high and anisotropic gauge factors. The gauge anisotropy stems from molecular and nanoscale fine tuning of interparticle properties of molecularly linked nanoparticle assembly on flexible microelectrodes, which has important implication for the design of gauge sensors for highly sensitive detection of deformation in complex sensing environment or on complex curved surfaces such as wearable electronics and skin sensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas/química , Anisotropia , Ouro
8.
Langmuir ; 31(41): 11158-63, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26444621

RESUMO

This report describes findings of an investigation of harvesting nanocatalytic heat localized in a nanoalloy catalyst layer as a heat source in a nanocomposite thin film thermoelectric device for thermoelectric energy conversion. This device couples a heterostructured copper-zinc sulfide nanocomposite for thermoelectrics and low-temperature combustion of methanol fuels over a platinum-cobalt nanoalloy catalyst for producing heat localized in the nanocatalyst layer. The possibility of tuning nanocatalytic heat in the nanocatalyst and thin film thermoelectric properties by compositions points to a promising pathway in thermoelectric energy conversion.

9.
J Am Chem Soc ; 136(19): 7140-51, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24794852

RESUMO

Alloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly active and stable catalysts. However, the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy catalysts. This work addresses this challenge by a novel approach to investigating the catalytic oxidation of carbon monoxide (CO) over palladium-nickel (PdNi) nanoalloys with well-defined bimetallic composition, which reveals a remarkable maximal catalytic activity at Pd:Ni ratio of ~50:50. Key to understanding the structural-catalytic synergy is the use of high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis to probe the atomic structure of PdNi nanoalloys under controlled thermochemical treatments and CO reaction conditions. Three-dimensional (3D) models of the atomic structure of the nanoalloy particles were generated by reverse Monte Carlo simulations (RMC) guided by the experimental HE-XRD/PDF data. Structural details of the PdNi nanoalloys were extracted from the respective 3D models and compared with the measured catalytic properties. The comparison revealed a strong correlation between the phase state, chemical composition and atomic-scale structure of PdNi nanoalloys and their catalytic activity for CO oxidation. This correlation is further substantiated by analyzing the first atomic neighbor distances and coordination numbers inside the nanoalloy particles and at their surfaces. These findings have provided new insights into the structural synergy of nanoalloy catalysts by controlling the phase state, composition and atomic structure, complementing findings of traditional density functional theory studies.

10.
Sci Technol Adv Mater ; 15(2): 025002, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877663

RESUMO

Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal-support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering.

11.
J Phys Chem Lett ; : 10583-10591, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404467

RESUMO

Contrary to the common assumption that a higher bulk content of precious metals facilitates the preservation of more surface noble metal by serving as a reservoir for surface enrichment, we demonstrate that a lower bulk content of Au results in a more stable arrangement of Au atoms at the surface of Cu-Au nanoparticles when exposed to an O2 atmosphere. Using ambient pressure X-ray photoelectron spectroscopy, we investigate the surface segregation and oxidation behavior of Cu-Au nanoparticles across various compositions. Our results reveal that in Au-rich nanoparticles exposed to an H2 atmosphere, surface segregation prompts the formation of a continuous Au-enriched shell, which subsequently oxidizes into a complete CuOx shell upon transitioning to an O2 atmosphere. Conversely, in Au-poor nanoparticles during H2 treatment, segregation results in the emergence of Au clusters embedded within the surface layer, persisting upon exposure to O2. This unexpected phenomenon shows that reducing the bulk content of precious metals can enhance the surface stability of noble atoms under oxidizing conditions, as further demonstrated by comparing the catalytic performance of Cu-Au nanoparticles with varying Au bulk contents in CO oxidation.

12.
Langmuir ; 29(29): 9249-58, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23841935

RESUMO

The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.


Assuntos
Ligas/química , Etanol/química , Nanoestruturas/química , Paládio/química , Catálise , Cobalto/química , Cobre/química , Eletroquímica , Gases/química , Concentração de Íons de Hidrogênio , Oxirredução , Propriedades de Superfície
13.
Appl Spectrosc ; 77(8): 860-872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37604114

RESUMO

It is conventionally expected that the performance of existing gas sensors may degrade in the field compared to laboratory conditions because (i) a sensor may lose its accuracy in the presence of chemical interferences and (ii) variations of ambient conditions over time may induce sensor-response fluctuations (i.e., drift). Breaking this status quo in poor sensor performance requires understanding the origins of design principles of existing sensors and bringing new principles to sensor designs. Existing gas sensors are single-output (e.g., resistance, electrical current, light intensity, etc.) sensors, also known as zero-order sensors (Karl Booksh and Bruce R. Kowalski, Analytical Chemistry, DOI: 10.1021/ac00087a718). Any zero-order sensor is undesirably affected by variable chemical background and sensor drift that cannot be distinguished from the response to an analyte. To address these limitations, we are developing multivariable gas sensors with independent responses, which are first-order analytical instruments. Here, we demonstrate self-correction against drift in two types of first-order gas sensors that operate in different portions of the electromagnetic spectrum. Our radiofrequency sensors utilize dielectric excitation of semiconducting metal oxide materials on the shoulder of their dielectric relaxation peak and achieve self-correction of the baseline drift by operation at several frequencies. Our photonic sensors utilize nanostructured sensing materials inspired by Morpho butterflies and achieve self-correction of the baseline drift by operation at several wavelengths. These principles of self-correction for drift effects in first-order sensors open opportunities for diverse emerging monitoring applications that cannot afford frequent periodic maintenance that is typical of traditional analytical instruments.

14.
J Am Chem Soc ; 134(36): 15048-60, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22938379

RESUMO

The understanding of the atomic-scale structural and chemical ordering in supported nanosized alloy particles is fundamental for achieving active catalysts by design. This report shows how such knowledge can be obtained by a combination of techniques including X-ray photoelectron spectroscopy and synchrotron radiation based X-ray fine structure absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis, and how the support-nanoalloy interaction influences the catalytic activity of ternary nanoalloy (platinum-nickel-cobalt) particles on three different supports: carbon, silica, and titania. The reaction of carbon monoxide with oxygen is employed as a probe to the catalytic activity. The thermochemical processing of this ternary composition, in combination with the different support materials, is demonstrated to be capable of fine-tuning the catalytic activity and stability. The support-nanoalloy interaction is shown to influence structural and chemical ordering in the nanoparticles, leading to support-tunable active sites on the nanoalloys for oxygen activation in the catalytic oxidation of carbon monoxide. A nickel/cobalt-tuned catalytic site on the surface of nanoalloy is revealed for oxygen activation, which differs from the traditional oxygen-activation sites known for oxide-supported noble metal catalysts. The discovery of such support-nanoalloy interaction-enabled oxygen-activation sites introduces a very promising strategy for designing active catalysts in heterogeneous catalysis.

15.
ACS Appl Mater Interfaces ; 14(9): 11435-11447, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195398

RESUMO

The ability to harness the catalytic oxidation of hydrocarbons is critical for both clean energy production and air pollutant elimination, which requires a detailed understanding of the dynamic role of the nanophase structure and surface reactivity under the reaction conditions. We report here findings of an in situ/operando study of such details of a ternary nanoalloy under the propane oxidation condition using high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The catalysts are derived by alloying Pt with different combinations of second (Pd) and third (Ni) transition metals, showing a strong dependence of the catalytic activity on the Ni content. The evolution of the phase structure of the nanoalloy is characterized by HE-XRD/PDF probing of the lattice strain, whereas the surface activity is monitored by DRIFTS detection of the surface intermediate formation during the oxidation of propane by oxygen. The results reveal the dominance of the surface intermediate species featuring a lower degree of oxygenation upon the first C-C bond cleavage on the lower-Ni-content nanoalloy and a higher degree of oxygenation upon the second C-C bond cleavage on the higher-Ni-content nanoalloy. The face-centered-cubic-type phase structures of the nanoalloys under the oxidation condition are shown to exhibit Ni-content-dependent changes of lattice strains, featuring the strongest strain with little variation for the higher-Ni-content nanoalloy, in contrast to the weaker strains with oscillatory variation for the lower-Ni-content nanoalloys. This process is also accompanied by oxygenation of the metal components in the nanoalloy, showing a higher degree of oxygenation for the higher-Ni-content nanoalloy. These subtle differences in phase structure and surface activity changes correlate with the Ni-composition-dependent catalytic activity of the nanoalloys, which sheds a fresh light on the correlation between the dynamic change of atomic strains and the surface reactivity and has significant implications for the design of oxidation catalysts with enhanced activities.

16.
Anal Chem ; 83(22): 8688-95, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21999710

RESUMO

The ability for silver nanoparticles to function as an antibacterial agent while being separable from the target fluids is important for bacterial inactivation in biological fluids. This report describes the analysis of the antimicrobial activities of silver-coated magnetic nanoparticles synthesized by wet chemical methods. The bacterial inactivation of several types of bacteria was analyzed, including Gram-positive bacteria ( Staphylococcus aureus and Bacillus cereus ) and Gram-negative bacteria ( Pseudomonas aeruginosa , Enterobacter cloacae , and Escherichia coli ). The results have demonstrated the viability of the silver-coated magnetic nanoparticles for achieving effective bacterial inactivation efficiency comparable to and better than that of silver nanoparticles conventionally used. The bacteria inactivation efficiency of our silver-coated MnZn ferrite (MZF@Ag) nanoparticles was also determined for blood platelets samples, demonstrating the potential of utilization in inactivating bacterial growth in platelets prior to transfusion to ensure blood product safety, which also has important implications for enabling the capability of effective separation, delivery, and targeting of the antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Magnetismo , Nanopartículas Metálicas/química , Prata/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Prata/química
17.
Nat Commun ; 12(1): 859, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558516

RESUMO

Alloying noble metals with non-noble metals enables high activity while reducing the cost of electrocatalysts in fuel cells. However, under fuel cell operating conditions, state-of-the-art oxygen reduction reaction alloy catalysts either feature high atomic percentages of noble metals (>70%) with limited durability or show poor durability when lower percentages of noble metals (<50%) are used. Here, we demonstrate a highly-durable alloy catalyst derived by alloying PtPd (<50%) with 3d-transition metals (Cu, Ni or Co) in ternary compositions. The origin of the high durability is probed by in-situ/operando high-energy synchrotron X-ray diffraction coupled with pair distribution function analysis of atomic phase structures and strains, revealing an important role of realloying in the compressively-strained single-phase alloy state despite the occurrence of dealloying. The implication of the finding, a striking departure from previous perceptions of phase-segregated noble metal skin or complete dealloying of non-noble metals, is the fulfilling of the promise of alloy catalysts for mass commercialization of fuel cells.

18.
Nat Commun ; 11(1): 4201, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826920

RESUMO

The need for active and stable oxidation catalysts is driven by the demands in production of valuable chemicals, remediation of hydrocarbon pollutants and energy sustainability. Traditional approaches focus on oxygen-activating oxides as support which provides the oxygen activation at the catalyst-support peripheral interface. Here we report a new approach to oxidation catalysts for total oxidation of hydrocarbons (e.g., propane) by surface oxygenation of platinum (Pt)-alloyed multicomponent nanoparticles (e.g., platinum-nickel cobalt (Pt-NiCo)). The in-situ/operando time-resolved studies, including high-energy synchrotron X-ray diffraction and diffuse reflectance infrared Fourier transform spectroscopy, demonstrate the formation of oxygenated Pt-NiOCoO surface layer and disordered ternary alloy core. The results reveal largely-irregular oscillatory kinetics associated with the dynamic lattice expansion/shrinking, ordering/disordering, and formation of surface-oxygenated sites and intermediates. The catalytic synergy is responsible for reduction of the oxidation temperature by ~100 °C and the high stability under 800 °C hydrothermal aging in comparison with Pt, and may represent a paradigm shift in the design of self-supported catalysts.

19.
Adv Mater ; 32(36): e2002171, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32705728

RESUMO

Fibrous materials serve as an intriguing class of 3D materials to meet the growing demands for flexible, foldable, biocompatible, biodegradable, disposable, inexpensive, and wearable sensors and the rising desires for higher sensitivity, greater miniaturization, lower cost, and better wearability. The use of such materials for the creation of a fibrous sensor substrate that interfaces with a sensing film in 3D with the transducing electronics is however difficult by conventional photolithographic methods. Here, a highly effective pathway featuring surface-mediated interconnection (SMI) of metal nanoclusters (NCs) and nanoparticles (NPs) in fibrous materials at ambient conditions is demonstrated for fabricating fibrous sensor substrates or platforms. Bimodally distributed gold-copper alloy NCs and NPs are used as a model system to demonstrate the semiconductive-to-metallic conductivity transition, quantized capacitive charging, and anisotropic conductivity characteristics. Upon coupling SMI of NCs/NPs as electrically conductive microelectrodes and surface-mediated assembly (SMA) of the NCs/NPs as chemically sensitive interfaces, the resulting fibrous chemiresistors function as sensitive and selective sensors for gaseous and vaporous analytes. This new SMI-SMA strategy has significant implications for manufacturing high-performance fibrous platforms to meet the growing demands of the advanced multifunctional sensors and biosensors.


Assuntos
Celulose/química , Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Eletrodos , Propriedades de Superfície
20.
Chem Sci ; 10(29): 7104-7110, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31588278

RESUMO

Understanding the structural ordering and orientation of interfacial molecular assemblies requires an insight into the penetration depth of the probe molecules which determines the interfacial reactivity. In contrast to the conventional liquid probe-based contact angle measurement in which penetration depth is complicated by the liquid cohesive interaction, we report here a new approach that features a simple combination of vaporous hexane, which involves only van der Waals interaction, and quartz crystal microbalance operated at the third harmonic resonance, which is sensitive to sub-monolayer (0.2%) adsorption. Using this combination, we demonstrated the ability of probing the structural ordering and orientation of the self-assembled monolayers with a sensitivity from penetrating the top portion of the monolayers to interacting with the very top atomic structure at the interface. The determination of the dependence of the adsorption energy of vaporous hexane on the penetration depth in the molecular assembly allowed us to further reveal the atomic-scale origin of the odd-even oscillation, which is also substantiated by density functional theory calculations. The findings have broader implications for designing interfacial reactivities of molecular assemblies with atomic-scale depth precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA