Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 708: 149787, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38537527

RESUMO

We recently identified the deazaflavin cofactor as a light emitter in novel bioluminescence (BL) system from Siberian earthworms Henlea sp. (Petushkov et al., 2023, Org. Biomol. Chem. 21:415-427). In the present communication we compared in vitro BL spectra in the absence and in the presence of the cofactor and found a wavelength shift from 420 to 476 nm. This violet-blue BRET to deazaflavin cofactor (acceptor of photonless transfer) masks the actual oxyluciferin as an emitter (BRET donor) in the novel BL system. The best candidate for that masked chromophore is tryptophan 2-carboxylate (T2C) found previously as a building block in some natural products isolated from Henlea sp. (Dubinnyi et al., 2020, ChemSelect 5:13155-13159). We synthesized T2C and acetyl-T2C, verified their presence in earthworms by nanoflow-HRMS, explored spectral properties of excitation and emission spectra and found a chain of excitation/emission maxima with a perfect potential for BRET: 300 nm (excitation of T2C) - 420 nm (emission of T2C) - 420 nm (excitation of deazaflavin) - 476 nm (emission of deazaflavin, BL). An array of natural products with T2C chromophore are present in BL earthworms as candidates for novel oxyluciferin. We demonstrated for the Henlea BL that the energy of the excited state of the T2C chromophore is transferred by the Förster mechanism and then emitted by deazaflavin (BRET), similarly to known examples: aequorin-GFP in Aequorea victoria and antenna proteins in bacterial BL systems (lumazine from Photobacterium and yellow fluorescent protein from Vibrio fischeri strain Y1).


Assuntos
Produtos Biológicos , Oligoquetos , Animais , Proteínas Luminescentes/metabolismo , Oligoquetos/metabolismo , Triptofano , Proteínas de Bactérias/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298416

RESUMO

Biochemistry of bioluminescence of the marine parchment tubeworm Chaetopterus has been in research focus for over a century; however, the results obtained by various groups contradict each other. Here, we report the isolation and structural elucidation of three compounds from Chaetomorpha linum algae, which demonstrate bioluminescence activity with Chaetopterus luciferase in the presence of Fe2+ ions. These compounds are derivatives of polyunsaturated fatty acid peroxides. We have also obtained their structural analogues and demonstrated their activity in the bioluminescence reaction, thus confirming the broad substrate specificity of the luciferase.


Assuntos
Peróxidos , Poliquetos , Animais , Luciferases/química , Medições Luminescentes
3.
Biochem J ; 418(3): 567-74, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19143658

RESUMO

A vast colour palette of monomeric fluorescent proteins has been developed to investigate protein localization, motility and interactions. However, low brightness has remained a problem in far-red variants, which hampers multicolour labelling and whole-body imaging techniques. In the present paper, we report mKate2, a monomeric far-red fluorescent protein that is almost 3-fold brighter than the previously reported mKate and is 10-fold brighter than mPlum. The high-brightness, far-red emission spectrum, excellent pH resistance and photostability, coupled with low toxicity demonstrated in transgenic Xenopus laevis embryos, make mKate2 a superior fluorescent tag for imaging in living tissues. We also report tdKatushka2, a tandem far-red tag that performs well in fusions, provides 4-fold brighter near-IR fluorescence compared with mRaspberry or mCherry, and is 20-fold brighter than mPlum. Together, monomeric mKate2 and pseudo-monomeric tdKatushka2 represent the next generation of extra-bright far-red fluorescent probes offering novel possibilities for fluorescent imaging of proteins in living cells and animals.


Assuntos
Corantes Fluorescentes , Proteínas Luminescentes , Sequência de Aminoácidos , Animais , Linhagem Celular , Diagnóstico por Imagem/métodos , Embrião não Mamífero , Fluorescência , Corantes Fluorescentes/química , Células HeLa , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Xenopus laevis , Proteína Vermelha Fluorescente
4.
Nat Methods ; 4(7): 555-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17572680

RESUMO

Fluorescent proteins have become extremely popular tools for in vivo imaging and especially for the study of localization, motility and interaction of proteins in living cells. Here we report TagRFP, a monomeric red fluorescent protein, which is characterized by high brightness, complete chromophore maturation, prolonged fluorescence lifetime and high pH-stability. These properties make TagRFP an excellent tag for protein localization studies and fluorescence resonance energy transfer (FRET) applications.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Substâncias Luminescentes/química , Proteínas Luminescentes/química , Proteínas/análise , Fluorescência , Células HeLa , Humanos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA