Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(39): e202409070, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38969622

RESUMO

Steric manipulation is a known concept in molecular recognition but there is currently no linear free energy relationship correlating sterics to the stability of receptor-anion complexes nor to the reactivity of the bound anion. By analogy to Tolman cone angles in cation coordination chemistry, we explore how to define and correlate cone angles of organo-trifluoroborates (R-BF3 -) to the affinities observed for cyanostar-anion binding. We extend the analogy to a rare investigation of the anion's reactivity and how it changes upon binding. The substituent on the anion is used to define the cone angle, θ. A series of 10 anions were studied including versions with ethynyl, ethylene, and ethyl substituents to tune steric bulk across the sp, sp2 and sp3 hybridized α-carbons bearing 0, 1 and 2 hydrogen atoms. A linear relationship between affinity and cone angle is observed for anions bearing substituents larger than the -BF3 - headgroup. This correlation predicted affinities of two new anions to within ±5 %. We explored how complexation affects the reactivity of fluoride exchange. The yield of fluoride transfer from R-BF3 - to Lewis acid triphenylborane is correlated with cone angle. We predict that other rigid macrocycles, like commercially available bambusuril, could follow these trends.

2.
J Am Chem Soc ; 144(3): 1274-1287, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015538

RESUMO

Preorganization is a key concept in supramolecular chemistry. Preorganized receptors enhance binding by minimizing the organization costs associated with adopting the conformation needed to orient the binding sites toward the guest. Conversely, poorly organized receptors show affinities below what is possible based on the potential of their specific binding interactions. Despite the fact that the organization energy is paid each time like a tax, its value has never been measured directly, though many compounds have been developed to measure its effects. We present a method to quantify the hidden costs of receptor organization by independently measuring the contribution it makes to chloride complexation by a flexible foldameric receptor. This method uses folding energy to approximate organization energy and relies on measurement of the coil-helix equilibrium as a function of solvent. We also rely on the finding, established with rigid receptors, that affinity is inversely related to the solvent dielectric and expect the same for the foldamer's helically organized state. Increasing solvent polarity across nine dichloromethane-acetonitrile mixtures we see an unusual V-shape in affinity (decrease then increase). Quantitatively, this shape arises from weakened hydrogen-bonding interactions with solvent polarity followed by solvent-driven folding into an organized helix. We confirm that dielectric screening impacts the stability of host-guest complexes of flexible foldamers just like rigid receptors. These results experimentally verify the canonical model of binding (affinity depends on the sum of organization and noncovalent interactions). The picture of how solvent impacts complex stability and conformational organization thereby helps lay the groundwork for de novo receptor design.

3.
Chemistry ; 28(60): e202201584, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35754003

RESUMO

The recognition of boron compounds is well developed as boronic acids but untapped as organotrifluoroborate anions (R-BF3 - ). We are exploring the development of these and other designer anions as anion-recognition motifs by considering them as substituted versions of the parent inorganic ion. To this end, we demonstrate strong and reliable binding of organic trifluoroborates, R-BF3 - , by cyanostar macrocycles that are size-complementary to the inorganic BF4 - progenitors. We find that recognition is modulated by the substituent's sterics and that the affinities are retained using the common K+ salts of R-BF3 - anions.


Assuntos
Compostos de Boro , Sais , Sais/química , Ânions/química , Ácidos Borônicos
4.
J Am Chem Soc ; 143(8): 3191-3204, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33596052

RESUMO

Persistent anion binding in a wide range of solution environments is a key challenge that continues to motivate and demand new strategies in synthetic receptor design. Though strong binding in low-polarity solvents has become routine, our ability to maintain high affinities in high-polarity solvents has not yet reached the standard set by nature. Anions are bound and transported regularly in aqueous environments by proteins that use secondary and tertiary structure to isolate anion binding sites from water. Inspired by this principle of solvent exclusion, we created a sequence-defined foldameric capsule whose global minimum conformation displays a helical folded state and is preorganized for 1:1 anion complexation. The high stability of the folded geometry and its ability to exclude solvent were supported by solid-state and solution phase studies. This capsule then withstood a 4-fold increase in solvent dielectric constant (εr) from dichloromethane (9) to acetonitrile (36) while maintaining a high and solvent-independent affinity of 105 M-1; ΔG ∼ 28 kJ mol-1. This behavior is unusual. More typical of solvent-dependent behavior, Cl- affinities were seen to plummet in control compounds, such as aryl-triazole macrocycles and pentads, with their solvent-exposed binding cavities susceptible to dielectric screening. Finally, dimethyl sulfoxide denatures the foldamer by putative solvent binding, which then lowers the foldamer's Cl- affinity to normal levels. The design of this capsule demonstrates a new prototype for the development of potent receptors that can operate in polar solvents and has the potential to help manage hydrophilic anions present in the hydrosphere and biosphere.

5.
Proc Natl Acad Sci U S A ; 115(38): 9391-9396, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29735677

RESUMO

The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.


Assuntos
Fenômenos Biofísicos , Modelos Teóricos , Movimento (Física) , Termodinâmica , Algoritmos , Catenanos/química , Difusão , Eletroquímica , Cinética , Simulação de Dinâmica Molecular , Rotaxanos/química
6.
J Am Chem Soc ; 142(28): 12167-12180, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539380

RESUMO

Fluorophores are powerful tools for the study of chemistry, biology, and physics. However, fluorescence is severely impaired when concentrations climb above 5 µM as a result of effects like self-absorption and chromatic shifts in the emitted light. Herein, we report the creation of a charge-transfer (CT) fluorophore and the discovery that its emission color seen at low concentrations is unchanged even at 5 mM, some 3 orders of magnitude beyond typical limits. The fluorophore is composed of a triphenylamine-substituted cyanostar macrocycle, and it exhibits a remarkable Stokes shift of 15 000 cm-1 to generate emission at 633 nm. Crucial to the performance of this fluorophore is the observation that its emission spectrum shows near-zero overlap with the absorption band at 325 nm. We propose that reducing the spectral overlap to zero is a key to achieving full fluorescence across all concentrations. The triphenylamine donor and five cyanostilbene acceptor units of the macrocycle generate an emissive CT state. Unlike closely related donor-acceptor control compounds showing dual emission, the cyanostar framework inhibited emission from the second state to create a zero-overlap fluorophore. We demonstrated the use of emission spectroscopy for characterization of host-guest complexation at millimolar concentrations, which are typically the exclusive domain of NMR spectroscopy. The binding of the PF6- anion generates a 2:1 sandwich complex with blue-shifted emission. Distinct from twisted intramolecular charge-transfer (TICT) states, experiment-supported density functional theory shows a 67° twist inside an acceptor unit in the CT state instead of displaying a twist between the donor and acceptor; it is TICT-like. Inspired by the findings, we uncovered similar concentration-independent behavior from a control compound, strongly suggesting this behavior may be latent to other large Stokes-shift fluorophores. We discuss strategies capable of generating zero-overlap fluorophores to enable accurate fluorescence characterization of processes across all practical concentrations.


Assuntos
Corantes Fluorescentes/análise , Teoria da Densidade Funcional , Estrutura Molecular , Espectrometria de Fluorescência
7.
J Am Chem Soc ; 140(25): 7773-7777, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29886746

RESUMO

A new rotamer-based strategy for negative allostery has been used to control host-host interactions and product yield upon anion complexation. Coassembly of anion dimers as guests inside two cyanostar macrocycles drives selection of one rotamer in which all ten steric groups get directed outward to destabilize triply stacked macrocycles. A large entropy penalty (Δ S) is quantified upon anion binding when the multiple dynamic rotamers collapse down to one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA