Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Idioma
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(9): 4874-4883, 2023 Sep 08.
Artigo em Zh | MEDLINE | ID: mdl-37699806

RESUMO

As one of the famous karst springs in Shanxi Province, the Gudui spring is the only medium-low temperature hot spring, with a long history of development and a rich cultural accumulation. The karst groundwater in the Gudui spring catchment was taken as the research object. Through systematic sample collection and isotope analysis, hydrochemistry (Durov map, ion ratio, Gibbs map, and hydrogen and oxygen isotope) methods were comprehensively used to analyze groundwater hydrochemistry and groundwater system runoff characteristics. The87Sr/86Sr value of karst groundwater in the Gudui spring catchment was 0.709 to 0.717, and the Mg/(Mg+Ca) value was 0.27 to 0.74. By analyzing the Sr isotope composition and Mg/(Mg+Ca) and 1/Sr variation characteristics, it was concluded that the karst groundwater in the Gudui spring catchment was a mixture of deep hot water and shallow cold water. The karst water subsystem of Nanliang spring presented the characteristics of carbonate stratum runoff. The karst water subsystem of Fuling Mountain Gaoxian Haitou spring and the deep circulation subsystem of Houma Basin exhibited the runoff characteristics of carbonate rock and igneous rock strata. The karst water subsystem of Taiershan Jiuyuanshan Gudui spring presented the runoff characteristics of carbonate rock and ancient silicoaluminate strata. The δ18O value in karst groundwater of Guodui spring area ranged from -11.46‰ to -7.81‰, and the average value was -10.08‰. The range of the δD value was -83.7‰ to -60.8‰, and the average value was -73.6‰. This showed that karst groundwater in the spring area was the result of mixing of various types of water. Through comparative analysis of hydrogen and oxygen isotopes of 2014 and 2021 sampling points at the same location, it was concluded that the change in water samples at the Guduiquan resulted from the gradual accumulation of water supplied by Sanquan Reservoir. The change in Sanquan Reservoir was due to the influence of Yellow River diversion. The karst groundwater in the spring area were characterized by large calcium ion, magnesium ion, and sodium ion values; a small potassium ion value; a large sulfate value; and a small chloride value. The hydrochemical types of karst groundwater in Gudui spring catchment could be divided into SO4-Na, SO4-Ca, HCO3-Na, HCO3-Mg, HCO3-Ca, and Cl-Na. The hydrochemical types of karst groundwater showed evident hydrochemical composition zoning from HCO3-Ca·Mg→HCO3·SO4-Ca·Mg→SO4·HCO3-Na·Ca→SO4·Cl-Na·Ca. According to the comprehensive analysis of hydrochemical isotope and hydrogeological conditions, the karst water subsystem of Nanliang spring was primarily recharged by rainfall infiltration in the exposed limestone area and river infiltration, and its karst groundwater was recharged by runoff from south to north to the karst water subsystem of Fuling Mountain Gaoxian Haitou spring and the deep circulation subsystem of Houma Basin. The karst water subsystem of Taier Jiuyuan Mountain Gudui spring received rainfall infiltration supplement and upstream runoff supplement from the exposed limestone area. Its karst groundwater flowed from north to south and received the supply of Sanquan Reservoir from Yellow River water in the natural discharge area of Gudui spring.

2.
Huan Jing Ke Xue ; 44(8): 4304-4313, 2023 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-37694625

RESUMO

Dispersed karst water is an important water supply source, or even the only water supply source, for some districts and counties in Chongqing City. It is particularly necessary to understand the distribution characteristics of metal elements in karst water and the health risks exposed. In this study, the scattered karst water in the southeastern part of Chongqing was taken as the main research object, and the concentrations of Al, Cu, Pb, Zn, Cr, Cd, Ni, Mn, As, and Hg in 42 groups of karst spring water samples were determined. The spatial distribution of metal elements with a high detection rate was revealed using the ordinary kriging interpolation method, and the spatial distribution characteristics, sources, and health risks of metal elements were analyzed using multivariate statistical methods and health risk models. The results showed that the quality of dispersed karst water in southeastern Chongqing was generally good, and the spatial scale variability in the occurrence of metal elements in karst water was strong, especially for Ni and As. The sources of Cu, Pb, As, Zn, and Cr were mainly affected by the regional geological background; Al and Mn were mainly affected by human industrial, agricultural, and mining activities; and Ni was affected by both the natural background and human activities. The total health risk of exposure through the drinking route was higher than that of the skin infiltration route, which was the main exposure route of the human body. The total health risk of children exposed through the drinking route was higher than that of adults, and the total health risk of adults exposed through the skin infiltration route was higher than that of children. It is worth noting that Cr was the determinant of total health risk. From the perspective of drinking water safety, local residents need to pay certain attention to water quality when drinking distributed karst groundwater, in order to reduce the health risk of the population.


Assuntos
Água Subterrânea , Mercúrio , Adulto , Criança , Humanos , Chumbo , Medição de Risco , Agricultura
3.
Huan Jing Ke Xue ; 43(10): 4440-4448, 2022 Oct 08.
Artigo em Zh | MEDLINE | ID: mdl-36224130

RESUMO

The Fenhe River Basin is the mother river of Shanxi Province. Due to the over-exploitation of water resources and the impact of social and economic development, the ecological environment has deteriorated. After a series of treatment and protection measures, the water quality has since been improved. Mathematical statistics, Piper diagrams, Gibbs model, hydrogen and oxygen isotopes, and other methods were used to analyze the characteristics and sources of hydrochemistry in the surface water of the Fenhe River basin, which revealed the evolution process of surface water quality of the Fenhe River basin. The results showed that the content of the main hydrochemical components in the main stream surface water of Fenhe River basin increased gradually along the runoff path. The hydrochemical types of surface water of Fenhe River basin were mainly HCO3·SO4·Cl-Ca·Na·Mg and SO4·HCO3·Cl-Ca·Na·Mg. There were great differences in hydrochemical components of tributaries and karst water in the basin. There were also great differences in hydrochemical components of tributaries in the basin. The hydrochemical types of surface water of karst water were mainly SO4·HCO3-Ca·Mg. The hydrochemical composition of surface water in Fenhe River basin was mainly affected by rock weathering and evaporation crystallization, whereas rainfall had little effect. Na+ and K+ mainly came from the dissolution of evaporated salt rocks with Na in the surrounding loess. Ca2+, Mg2+, and HCO3- mainly came from the dissolution of carbonate rocks. SO42- may have also come from the dissolution of sulfide minerals in the loess layer around Fenhe River in addition to the dissolution of gypsum. The values of δD and δ18O of Fenhe River surface water were gradually enriched from upstream to downstream. The characteristics of hydrogen and oxygen isotopes further showed that the surface water was mainly affected by evaporation. The results of this study can provide evidence for ecological restoration and protection and ecological civilization construction in the Fenhe River basin.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Sulfato de Cálcio , Carbonatos , Monitoramento Ambiental/métodos , Água Subterrânea/química , Hidrogênio , Minerais , Isótopos de Oxigênio , Sulfetos , Poluentes Químicos da Água/análise , Qualidade da Água
4.
Huan Jing Ke Xue ; 42(3): 1416-1423, 2021 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-33742938

RESUMO

Discharge in Niangziguan Spring is 7.19 m3·s-1, which is the main water supply source for Yangquan City and Pingding County. Every year, Yangquan municipal government take water from the mouth of Niangziguan Spring to supply drinking water to urban residents at a rate of approximately 1.7 m3·s-1. It is of great significance to determine the characteristics and causes of variations in spring water flow conditions for the appropriate utilization of water resources and pollution prevention. Here, sample collection and hydrochemical isotope analyses were undertaken for the Niangziguan Spring area to chemically characterize the water environment and genesis. The pH of the karst spring is 7.2-7.5 with an average of 7.36; the calcium content of the water is 112.1-135.2 mg·L-1 with a mean value of 131.4 mg·L-1; the concentration of magnesium ions is 34.8-42.3 mg·L-1 with an average of 40.8 mg·L-1; the concentration of K++Na- ions is 41.6-46.7 mg·L-1 with an average of 45.2 mg·L-1; and the sulfate ion concentration is 185.6-271.8 mg·L-1 with a mean value of 255.4 mg·L-1. The hydrochemical type of the aquifer is classified as HCO3·SO4-Ca·Mg. The spring water is characterized by high Ca2+, Mg2+, and SO42- concentrations, and low Na+, K+, and Cl- concentrations. The supply path of Chengxi Spring is shortest followed by Wulong Spring. The supply paths of the remaining five spring are much longer. The Niangziguan Spring water environment is characterized by increasing pollution from coal mine acid drainage alongside decreasing inputs from domestic sewage. Environmental isotope tracing shows that sulfate in Chengxi Spring mainly derives from precipitation and gypsum dissolution, and the concentrations of sulfate in Wulong Spring are increasing. These changes are mainly driven by the amount of coal mine acid water pollution in the area.

5.
Huan Jing Ke Xue ; 42(9): 4257-4266, 2021 Sep 08.
Artigo em Zh | MEDLINE | ID: mdl-34414723

RESUMO

Longzici Spring is an important water source for industry, agriculture, and urban life in Linfen City. With the improvements in public environmental health awareness, it is particularly necessary to study the health risk of posed by metal elements in groundwater. In this study, 43 groundwater samples from Longzici Spring area were analyzed for ten metal elements (As, Cd, Hg, Al, Pb, Co, Mn, Fe, Cu, and Ni). The distribution and health risk of these metal elements in the groundwater were studied using multivariate statistical analysis and a health risk assessment model. The results show that metal elements can be ranked, from high to low, by their average concentrations in groundwater in the following order: Fe, Al, Mn, Ni, As, Cu, Co, Pb, Hg, and Cd. The concentration of Al, Mn, Fe, and As exceed the limit for class Ⅲ water, as defined in the quality standard for groundwater (GB/T 14848-2017). Different types of groundwater in the spring area showed different metal contents. The quality of karst spring water was good, reaching the standard for drinking water, while mine drainage water exceeded the standard for drinking water, with the highest metal concentration (60%) and the worst water quality. Multivariate statistical results show that Pb, Ni, Co, Cd, Mn, and Cu concentrations were mainly affected by the geochemical background, while Al, Fe, Hg, and As concentrations were closely related to human mining activities under the unique geological background of Shanxi Province. The health risk assessment showed that the different types of groundwater could be ranked by the annual total health risks, posed by metal elements to adults and children through drinking water and skin infiltration, as follows: karst well > non-karst spring > non-karst well > karst spring. The health risks mainly came from drinking water, while health risks through skin infiltration would not cause obvious harm to the human body. The metal element causing the greatest health risk in spring groundwater was As, which should therefore be controlled in the utilization of water resources, especially in children's drinking water.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Adulto , Criança , Humanos , Metais/análise , Medição de Risco , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA