Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035645

RESUMO

Pyrimidine nucleotides are important metabolites that are building blocks of nucleic acids, which participate in various aspects of plant development. Only a few genes involved in pyrimidine metabolism have been identified in rice and the majority of their functions remain unclear. In this study, we used a map-based cloning strategy to isolate a UMPK gene in rice, encoding the UMP kinase that phosphorylates UMP to form UDP, from a recessive mutant with pale-green leaves. In the mutant, UDP content always decreased, while UTP content fluctuated with the development of leaves. Mutation of UMPK reduced chlorophyll contents and decreased photosynthetic capacity. In the mutant, transcription of plastid-encoded RNA polymerase-dependent genes, including psaA, psbB, psbC and petB, was significantly reduced, whereas transcription of nuclear-encoded RNA polymerase-dependent genes, including rpoA, rpoB, rpoC1, and rpl23, was elevated. The expression of UMPK was significantly induced by various stresses, including cold, heat, and drought. Increased sensitivity to cold stress was observed in the mutant, based on the survival rate and malondialdehyde content. High accumulation of hydrogen peroxide was found in the mutant, which was enhanced by cold treatment. Our results indicate that the UMP kinase gene plays important roles in regulating chloroplast development and stress response in rice.


Assuntos
Cloroplastos/fisiologia , Resposta ao Choque Frio , Núcleosídeo-Fosfato Quinase/metabolismo , Oryza/fisiologia , Desenvolvimento Vegetal , Clonagem Molecular , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas , Mutação , Núcleosídeo-Fosfato Quinase/genética , Fenótipo , Desenvolvimento Vegetal/genética , Plastídeos/genética , Transcrição Gênica
2.
Gene ; 526(2): 331-5, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23624393

RESUMO

This study aimed to elucidate the genetics of the adult root system in elite Chinese hybrid rice. Several adult root traits in a recombinant inbred line (RIL) population of Xieyou 9308 and two backcross F1 (BCF1) populations derived from the RILs were phenotyped under hydroponic culture at heading stage for quantitative trait locus (QTL) mapping and other statistical analysis. There a total of eight QTLs detected for the root traits. Among of them, a pleiotropic QTL was repeatedly flanked by RM180 and RM5436 on the short arm of chromosome 7 for multiple traits across RILs and its BCF1 populations, accounting for 6.88% to 25.26% of the phenotypic variances. Only additive/dominant QTLs were detected for the root traits. These results can serve as a foundation for facilitating future cloning and molecular breeding.


Assuntos
Oryza/genética , Raízes de Plantas/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Cromossomos de Plantas , Estudos de Associação Genética , Ligação Genética , Fenótipo , Mapeamento Físico do Cromossomo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA