Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Sci Food Agric ; 104(10): 5869-5881, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38407005

RESUMO

BACKGROUND: Flax lignan has attracted much attention because of its potential bioactivities. However, the bioavailability of secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, depends on the bioconversion by the colon bacteria. Lactic acid bacteria (LAB) with ß-glucosidase activity has found wide application in preparing bioactive aglycone. RESULTS: LAB strains with good ß-glucosidase activity were isolated from fermented tofu. Their bioconversion of flax lignan extract was investigated by resting cell catalysis and microbial fermentation, and the metabolism of SDG by Lactiplantibacillus plantarum C5 following fermentation was characterized by widely targeted metabolomics. Five L. plantarum strains producing ß-glucosidase with broad substrate specificity were isolated and identified, and they all can transform SDG into secoisolariciresinol (SECO). L. plantarum C5 resting cell reached a maximum SDG conversion of 49.19 ± 3.75%, and SECO generation of 21.49 ± 1.32% (0.215 ± 0.013 mm) at an SDG substrate concentration of 1 mM and 0.477 ± 0.003 mm SECO was produced at 4 mm within 24 h. Although sixteen flax lignan metabolites were identified following the fermentation of SDG extract by L. plantarum C5, among them, four were produced following the fermentation: SECO, demethyl-SECO, demethyl-dehydroxy-SECO and isolariciresinol. Moreover, seven lignans increased significantly. CONCLUSION: Fermentation significantly increased the profile and level of flax lignan metabolites, and the resting cell catalysis benefits from higher bioconversion efficiency and more straightforward product separation. Resting cell catalysis and microbial fermentation of flax lignan extract by the isolated ß-glucosidase production L. plantarum could be potentially applied in preparing flax lignan ingredients and fermented flaxseed. © 2024 Society of Chemical Industry.


Assuntos
Biotransformação , Fermentação , Linho , Lignanas , beta-Glucosidase , Lignanas/metabolismo , Lignanas/química , Linho/química , Linho/metabolismo , beta-Glucosidase/metabolismo , beta-Glucosidase/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimologia , Proteínas de Bactérias/metabolismo , Butileno Glicóis/metabolismo , Catálise , Glucosídeos
2.
Compr Rev Food Sci Food Saf ; 23(3): e13365, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767863

RESUMO

Filamentous fungal mycoproteins have gained increasing attention as sustainable alternatives to animal and plant-based proteins. This comprehensive review summarizes the nutritional characteristics, toxicological aspects, and health-promoting effects of mycoproteins, focusing on those derived from filamentous fungi, notably Fusarium venenatum. Mycoproteins are characterized by their high protein content, and they have a superior essential amino acid profile compared to soybeans indicating excellent protein quality and benefits for human nutrition. Additionally, mycoproteins offer enhanced digestibility, further highlighting their suitability as a protein source. Furthermore, mycoproteins are rich in dietary fibers, which have been associated with health benefits, including protection against metabolic diseases. Moreover, their fatty acids profile, with significant proportions of polyunsaturated fatty acids and absence of cholesterol, distinguishes them from animal-derived proteins. In conclusion, the future of mycoproteins as a health-promoting protein alternative and the development of functional foods relies on several key aspects. These include improving the acceptance of mycoproteins, conducting further research into their mechanisms of action, addressing consumer preferences and perceptions, and ensuring safety and regulatory compliance. To fully unlock the potential of mycoproteins and meet the evolving needs of a health-conscious society, continuous interdisciplinary research, collaboration among stakeholders, and proactive engagement with consumers will be vital.


Assuntos
Fusarium , Fusarium/química , Humanos , Proteínas Fúngicas/química , Animais , Valor Nutritivo , Alimento Funcional , Proteínas Alimentares , Fibras na Dieta
3.
Crit Rev Food Sci Nutr ; 63(29): 9843-9858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35532015

RESUMO

Hyperlipidemia, high levels of blood lipids including cholesterol and triglycerides, is a major risk factor for cardiovascular disease. Traditional treatments of hyperlipidemia often include lifestyle changes and pharmacotherapy. Recently, flaxseed has been approved as a nutrient that lowers blood lipids. Several metabolites of flaxseed lignan secoisolariciresinol diglucoside (SDG), have been identified that reduce blood lipids. SDG is present in flaxseed hull as an ester-linked copolymer with 3-hydroxy-3-methylglutaric acid (HMGA). However, purification processes involved in hydrolysis of the copolymer and enriching SDG are often expensive. The natural copolymer of SDG with HMGA (SDG polymer) is a source of bioactive compounds useful in prophylaxis of hypercholesterolemia. After consumption of the lignan copolymer, SDG and HMGA are released in the stomach and small intestines. SDG is metabolized to secoisolariciresinol, enterolactone and enterodiol, the bioactive forms of mammalian lignans. These metabolites are then distributed throughout the body where they accumulate in the liver, kidney, skin, other tissues, and organs. Successively, these metabolites reduce blood lipids including cholesterol, triglycerides, low density lipoprotein cholesterol, and lipid peroxidation products. In this review, the metabolism and efficacies of flaxseed-derived enriched SDG and SDG polymer will be discussed.


Assuntos
Linho , Proteínas HMGA , Hiperlipidemias , Lignanas , Animais , Humanos , Linho/metabolismo , Lipídeos , Triglicerídeos/metabolismo , Colesterol/metabolismo , Polímeros/metabolismo , Proteínas HMGA/metabolismo , Mamíferos/metabolismo
4.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175910

RESUMO

With the increasing accessibility of cannabis (Cannabis sativa L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards.


Assuntos
Cannabis , Big Data
5.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193986

RESUMO

Flaxseed (Linum usitatissimum L.) has been associated with numerous health benefits. The flax plant synthesizes an array of biologically active compounds including peptides or linusorbs (LOs, a.k.a., cyclolinopeptides), lignans, soluble dietary fiber and omega-3 fatty acids. The LOs arise from post-translational modification of four or more ribosome-derived precursors. These compounds exhibit an array of biological activities, including suppression of T-cell proliferation, excessive inflammation, and osteoclast replication as well as induction of apoptosis in some cancer cell lines. The mechanisms of LO action are only now being elucidated but these compounds might interact with other active compounds in flaxseed and contribute to biological activity attributed to other flax compounds. This review focuses on both the biological interaction of LOs with proteins and other molecules and comprehensive knowledge of LO pharmacological and biological properties. The physicochemical and nutraceutical properties of LOs, as well as the biological effects of certain LOs, and their underlying mechanisms of action, are reviewed. Finally, strategies for producing LOs by either peptide synthesis or recombinant organisms are presented. This review will be the first to describe LOs as a versatile scaffold for the action of compounds to deliver physiochemically/biologically active molecules for developing novel nutraceuticals and pharmaceuticals.

6.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36448088

RESUMO

Lignan is a class of diphenolic compounds that arise from the condensation of two phenylpropanoid moieties. Oilseed and cereal crops (e.g., flaxseed, sesame seed, wheat, barley, oats, rye, etc.) are major sources of plant lignan. Methods for commercial isolation of the lignan secoisolariciresinol diglucoside (SDG) are not well reported, as most publications describing the detection, extraction, and enrichment of SDG use methods that have not been optimized for commercial scale lignan recovery. Simply scaling up laboratory methods would require expensive infrastructure to achieve a marketable yield and reproducible product quality. Therefore, establishing standard protocols to produce SDG and its derivatives on an industrial scale is critical to decrease lignan cost and increase market opportunities. This review summarizes the human health benefits of flaxseed lignan consumption, lignan physicochemical properties, and mammalian lignan metabolism, and describes methods for detecting, extracting, and enriching flaxseed lignan. Refining and optimization of these methods could lead to the development of inexpensive lignan sources for application as an ingredient in medicines, dietary supplements, and other healthy ingredients.

7.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613979

RESUMO

Linosorbs (Los) are cyclic peptides from flaxseed oil composed of the LO mixture (LOMIX). The activity of LO has been reported as being anti-cancer and anti-inflammatory. However, the study of skin protection has still not proceeded. In particular, there are poorly understood mechanisms of melanogenesis to LO. Therefore, we investigated the anti-melanogenesis effects of LOMIX and LO, and its activity was examined in mouse melanoma cell lines. The treatment of LOMIX (50 and 100 µg/mL) and LO (6.25-50 µM) suppressed melanin secretion and synthesis, which were 3-fold increased, in a dose-dependent manner, up to 95%. In particular, [1-9-NαC]-linusorb B3 (LO1) and [1-9-NαC]-linusorb B2 (LO2) treatment (12.5 and 25 µM) highly suppressed the synthesis of melanin in B16F10 cell lines up to 90%, without toxicity. LOMIX and LOs decreased the 2- or 3-fold increased mRNA levels, including the microphthalmia-associated transcription factor (MITF), Tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2) at the highest concentration (25 µM). Moreover, the treatment of 25 µM LO1 and LO2 inhibited the expression of MITF and phosphorylation of upper regulatory proteins such as CREB and PKA. Taken together, these results suggested that LOMIX and its individual LO could inhibit melanin synthesis via downregulating the CREB-dependent signaling pathways, and it could be used for novel therapeutic materials in hyperpigmentation.


Assuntos
Linho , Melanoma Experimental , Melanoma , Animais , Camundongos , Melaninas , Monofenol Mono-Oxigenase/metabolismo , Linho/metabolismo , Peptídeos Cíclicos/farmacologia , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
8.
Molecules ; 25(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322712

RESUMO

Linusorbs (LOs) are natural peptides found in flaxseed oil that exert various biological activities. Of LOs, LOB3 ([1-9-NαC]-linusorb B3) was reported to have antioxidative and anti-inflammatory activities; however, its anti-cancer activity has been poorly understood. Therefore, this study investigated the anti-cancer effect of LOB3 and its underlying mechanism in glioblastoma cells. LOB3 induced apoptosis and suppressed the proliferation of C6 cells by inhibiting the expression of anti-apoptotic genes, B cell lymphoma 2 (Bcl-2) and p53, as well as promoting the activation of pro-apoptotic caspases, caspase-3 and -9. LOB3 also retarded the migration of C6 cells, which was achieved by suppressing the formation of the actin cytoskeleton critical for the progression, invasion, and metastasis of cancer. Moreover, LOB3 inhibited the activation of the proto-oncogene, Src, and the downstream effector, signal transducer and activator of transcription 3 (STAT3), in C6 cells. Taken together, these results suggest that LOB3 plays an anti-cancer role by inducing apoptosis and inhibiting the migration of C6 cells through the regulation of apoptosis-related molecules, actin polymerization, and proto-oncogenes.


Assuntos
Actinas/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Óleo de Semente do Linho/química , Antineoplásicos Fitogênicos/isolamento & purificação , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteína Oncogênica pp60(v-src)/antagonistas & inibidores , Proteína Oncogênica pp60(v-src)/genética , Polimerização/efeitos dos fármacos , Proto-Oncogene Mas , Fator de Transcrição STAT3/antagonistas & inibidores
9.
Bioconjug Chem ; 27(10): 2346-2358, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27626291

RESUMO

Bioactive flax cyclic peptides (orbitides and linusorbs) were site-specifically ligated through methionine with bovine serum albumin (BSA) to produce immunogenic compounds. In this study, modified flaxseed immunosuppressant orbitides (linusorbs or LOs) containing hydroxyl (OH) groups were synthesized for use as haptens. These compounds were extensively characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, high-performance liquid chromatography-tandem mass spectrometry, and Fourier transform infrared spectroscopy. The haptens were conjugated to BSA, and the extent of hapten incorporation was determined by matrix-assisted laser desorption and ionization, liquid chromatography-electrospray ionization-mass spectrometry, and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The BSA hapten complexes were used to elicit polyclonal antibody (pAbs) production in rabbits. A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed that used orbitide-specific pAbs and horseradish peroxidase (HRP) conjugates. The LO assay detection limit was approximately 0.01 µg/mL (ppm), and thus, ELISA can be used for the detection of LOs in tissue and plant samples. The pAbs can be used to detect and quantify LOs in flax and flaxseed samples, to verify the presence of LOs in flaxseed containing foods, and for the detection of LOs in tissue samples, wastes, and body fluids of animals fed flaxseed.


Assuntos
Anticorpos/química , Ensaio de Imunoadsorção Enzimática/métodos , Haptenos/química , Imunoconjugados/química , Animais , Técnicas de Química Sintética , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida , Espectroscopia de Ressonância Magnética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/imunologia , Coelhos , Soroalbumina Bovina/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Nat Prod ; 78(4): 645-52, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25785712

RESUMO

Orbitides are short (5-11 amino acid residue), ribosomally synthesized homodetic plant cyclic peptides characterized by N-to-C amide bonds rather than disulfide bonds. Orbitides can be discovered using mass spectrometry of plant extracts or by identifying DNA sequences coding for the precursor protein. The number of orbitides that have been characterized to date, by a number of different research groups, is modest. The nomenclatural system currently used for the Type VI cyclic peptides has been developed in an ad hoc fashion and is somewhat arbitrary. We propose a systematic naming system specifically for the Type VI cyclic peptides that reflects the taxonomic name of the species producing the orbitides and a numbering system that enables systematic representation of amino acid residues and modifications. The proposed naming system emulates the IUPAC Nomenclature for Natural Products and UniProt, both of which use abbreviations of taxonomic names for the compounds in question. Nomenclature for post-translational modifications also follows the IUPAC precedent, as well as the cyclic peptide literature. Furthermore, the proposed system aims to maintain agreement with the precedents set by the pre-existing literature. An example of the proposed nomenclature is provided using the methionine-containing homodetic peptides of Linum usitatissimum (flaxseed).


Assuntos
Oligopeptídeos/classificação , Peptídeos Cíclicos/classificação , Sequência de Aminoácidos , Sequência de Bases , Linho/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Peptídeos Cíclicos/química
11.
Foods ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891009

RESUMO

The anti-inflammatory effects of supernatants produced from sprouted barley inoculated with Lactiplantibacillus plantarum KCTC3104 (Lp), Leuconostoc mesenteroides KCTC3530 (Lm), Latilactobacillus curvatus KCTC3767 (Lc), or a mixture of these lactic acid bacteria were investigated using RAW264.7 macrophages. BLp and BLc, the lyophilized supernatants of fermented sprouted barley inoculated with Lp and Lc, respectively, effectively reduced the nitric oxide (NO) levels hypersecreted by lipopolysaccharide (LPS)-stimulated RAW264.7 and LPS-stimulated Caco-2 cells. BLp and BLc effectively reduced the NO levels in LPS-stimulated RAW264.7 macrophages, and these effects tended to be concentration-dependent. BLc and BLp also exhibited strong DPPH radical scavenging activity and immunostimulatory effects. BLp and BLc significantly suppressed the levels of NO and pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 in LPS-stimulated RAW264.7 macrophages and LPS-stimulated Caco-2 cells, indicating their anti-inflammatory effects. These effects were greater than those of unfermented barley sprout (Bs). The functional components of Bs, BLp, and BLc were analyzed by HPLC, and it was found that lutonarin and saponarin were significantly increased in the fermented sprouted barley sample inoculated with Lp and Lc (BLp and BLc).

12.
Food Chem ; 457: 140077, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905833

RESUMO

Human intestinal microbiota plays a crucial role in converting secoisolariciresinol diglucoside, a lignan found in flaxseed, to enterodiol, which has a range of health benefits: antioxidative, antitumor, and estrogenic/anti-estrogenic effects. Given the high secoisolariciresinol diglucoside content in flaxseed cake, this study investigated the potential of co-fermenting flaxseed cake with fermented soybean product to isolate bacterial strains that effectively convert secoisolariciresinol diglucoside to enterodiol in a controlled environment (in vitro). The co-fermentation process with stinky tofu microbiota significantly altered the lignan, generating 12 intermediate lignan metabolites as identified by targeted metabolomics. One particular promising strain, ZB26, demonstrated an impressive ability to convert secoisolariciresinol diglucoside. It achieved a conversion rate of 87.42 ± 0.33%, with secoisolariciresinol and enterodiol generation rates of 94.22 ± 0.51% and 2.91 ± 0.03%, respectively. Further optimization revealed, under specific conditions (0.5 mM secoisolariciresinol diglucoside, pH 8, 30 °C for 3 days), ZB26 could convert an even higher percentage (97.75 ± 0.05%) of the secoisolariciresinol diglucoside to generate secoisolariciresinol (103.02 ± 0.16%) and enterodiol (3.18 ± 0.31%). These findings suggest that the identified strains ZB26 have promising potential for developing functional foods and ingredients enriched with lignans.


Assuntos
Butileno Glicóis , Enterococcus faecium , Fermentação , Linho , Glucosídeos , Lignanas , Lignanas/metabolismo , Lignanas/química , Linho/química , Linho/metabolismo , Linho/microbiologia , Butileno Glicóis/metabolismo , Glucosídeos/metabolismo , Glucosídeos/química , Enterococcus faecium/metabolismo , Alimentos de Soja/análise , Alimentos de Soja/microbiologia , Biotransformação , Microbiota , Humanos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo
13.
Foods ; 12(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38002144

RESUMO

Flaxseed is becoming increasingly popular as a superfood due to its many health benefits. While flaxseed is considered an oilseed, flaxseed meal (the by-product of flaxseed oil extraction) also contains many nutritional compounds not found in the oil. This study explored the use of a Canadian flaxseed (Linum usitatissimum L.) meal product to fortify bakery foods and improve their nutritional properties. Muffins were made using a control recipe as well as four different formulations that included varying amounts of a standardized flaxseed meal supplement called XanFlax (5, 10, 20, and 40%). The physicochemical properties of the muffins, including their texture, color, sugar content, pH, specific gravity, loss rate, and moisture, were evaluated. Additionally, the sensory attributes contributing to muffin quality were thoroughly examined. The lightness (L*) and yellowness (b*) of the muffins, which were highest in the control group at 82.22 and 34.69, respectively, decreased as the amount of XanFlax increased (p < 0.05). Additionally, the redness (a*) of the muffins increased as the amount of XanFlax increased (p < 0.05). The muffins' sugar content (2.00 brix%) remained consistent across all treatments and controls except for those prepared with 20% XanFlax (2.17 brix%). As the amount of XanFlax powder increased, the pH of the muffins increased significantly. The moisture content in the muffins was highest at 23.71 ± 0.79% in the 10% XanFlax treatment and lowest at 22.06 ± 0.30% in the 40% XanFlax treatment. The muffins enriched with 5% XanFlax had an average height of 5.35 cm and volume of 131.33 mL, surpassing the results for the muffins made with other formulas (p < 0.05). Additionally, the cohesiveness and gumminess of the muffins tended to increase with the addition of XanFlax. The most favorable attributes, namely the appearance, flavor, taste, texture, and overall acceptance, were consistently associated with the 5% and 10% XanFlax treatments (p < 0.05). This study marks the first time a standardized flaxseed gum product, XanFlax, has been described in a functional baking application.

14.
Foods ; 12(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37761100

RESUMO

The demand for sustainable and functional plant-based products is on the rise. Plant proteins and polysaccharides often provide emulsification and stabilization properties to food and food ingredients. Recently, chickpea cooking water, also known as aquafaba, has gained popularity as a substitute for egg whites in sauces, food foams, and baked goods due to its foaming and emulsifying capacities. This study presents a modified eco-friendly process to obtain process water from faba beans and isolate and characterize the foam-inducing components. The isolated material exhibits similar functional properties, such as foaming capacity, to aquafaba obtained by cooking pulses. To isolate the foam-inducing component, the faba bean process water was mixed with anhydrous ethanol, and a precipitated fraction was obtained. The precipitate was easily dissolved, and solutions prepared with the alcohol precipitate retained the foaming capacity of the original extract. Enzymatic treatment with α-amylase or protease resulted in reduced foaming capacity, indicating that both protein and carbohydrates contribute to the foaming capacity. The dried precipitate was found to be 23% protein (consisting of vicilin, α-legumin, and ß-legumin) and 77% carbohydrate (amylose). Future investigations into the chemical structure of this foam-inducing agent can inform the development of foaming agents through synthetic or enzymatic routes. Overall, this study provides a potential alternative to aquafaba and highlights the importance of exploring plant-based sources for functional ingredients in the food industry.

15.
Foods ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496568

RESUMO

Flaxseed (Linum usitatissimum L.) is gaining popularity as a superfood due to its health-promoting properties. Mature flax grain includes an array of biologically active cyclic peptides or linusorbs (LOs, also known as cyclolinopeptides) that are synthesized from three or more ribosome-derived precursors. Two flaxseed orbitides, [1-9-NαC]-linusorb B3 and [1-9-NαC]-linusorb B2, suppress immunity, induce apoptosis in a cell line derived from human epithelial cancer cells (Calu-3), and inhibit T-cell proliferation, but the mechanism of LO action is unknown. LO-induced changes in gene expression in both nematode cultures and human cancer cell lines indicate that LOs promoted apoptosis. Specific evidence of LO bioactivity included: (1) distribution of LOs throughout the organism after flaxseed consumption; (2) induction of heat shock protein (HSP) 70A, an indicator of stress; (3) induction of apoptosis in Calu-3 cells; and (4) modulation of regulatory genes (determined by microarray analysis). In specific cancer cells, LOs induced apoptosis as well as HSPs in nematodes. The uptake of LOs from dietary sources indicates that these compounds might be suitable as delivery platforms for a variety of biologically active molecules for cancer therapy.

16.
Foods ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159463

RESUMO

Lactic acid bacteria present in Kimchi, such as Leuconostoc mesenteroides (Lm), Latilactobacillus curvatus (Lc), and Lactiplantibacillus plantarum (Lp) produce extracellular vesicles (ECVs) that modulate immune responses. The ECVs of probiotic Kimchi bacteria are abbreviated as LmV, LcV, and LpV. Treatment of macrophages (RAW264.7) with ECVs (LmV, LcV, and LpV) increased the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-6 (IL-6). Immunostimulatory effects exerted on the RAW264.7 cells were stronger after treatments with LmV and LcV than with LpV. Treatment of mice with LcV (1 mg/kg, orally) induced splenocyte proliferation and subsequent production of both NO and cytokines (INF-γ, TNF-α, IL-4, and IL-10). Furthermore, pre-treatment of macrophages and microglial cells with ECVs prior to LPS stimulation significantly attenuated the production of NO and pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6). Therefore, ECVs (LmV, LcV, and LpV) prevent inflammatory responses in the LPS-stimulated microglial cells by blocking the extracellular signal-regulated kinase (Erk) and p38 signaling pathways. These results showed that LmV, LcV, and LpV from Kimchi probiotic bacteria safely exert immunomodulatory effects.

17.
Foods ; 11(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35627075

RESUMO

The current study investigated the anti-neuroinflammatory effects and mechanisms of astragalin (Ast) and isoquercitrin (Que) isolated from chamchwi (Aster scaber Thunb.) in the lipopolysaccharide (LPS)-activated microglia and hippocampus of LPS induced mice. LPS induced increased cytotoxicity, nitric oxide (NO) production, antioxidant activity, reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS) expression, the release of pro-inflammatory cytokines, protein kinase B phosphorylation, and mitogen-activated protein kinases (MAPK) phosphorylation in LPS-treated microglial cells. Intraperitoneal injection of LPS also induced neuroinflammatory effects in the murine hippocampus. Ast and Que significantly reduced LPS-induced production of NO, iNOS, and pro-inflammatory cytokines in the microglia and hippocampus of mice. Therefore, anti-inflammatory effects on MAPK signaling pathways mediate microglial cell and hippocampus inflammation. In LPS-activated microglia and hippocampus of LPS-induced mice, Ast or Que inhibited MAPK kinase phosphorylation by extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 signaling proteins. Ast and Que inhibited LPS-induced ROS generation in microglia and increased 1,1-diphenyl-2-picrylhydrazyl radical scavenging. In addition, LPS treatment increased the heme oxygenase-1 level, which was further elevated after Ast or Que treatments. Ast and Que exert anti-neuroinflammatory activity by down-regulation of MAPKs signaling pathways in LPS-activated microglia and hippocampus of mice.

18.
Foods ; 10(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063536

RESUMO

With the increasing number of older adults, the elderly-friendly food market has been rapidly growing. The physicochemical and antioxidant properties of soymilk-based banana-blueberry-puree with and without flaxseed-based (XanFlax) and xanthan-gum-based (brand G) thickeners were compared as a potential senior food. Samples included a control, three treatments with XanFlax (1%, 3%, and 5%), and three treatments with brand G (1.35%, 2.7%, and 5.4%). The physicochemical (color, sugar, salinity, pH, viscosity, and hardness) and antioxidant properties [DPPH, ABTS, reducing power (RP), and total polyphenol content (TPC)] were compared. The chromaticity values (L*, a*, and b*) and pHs were similar among all treatments and the control, but the salinity of brand G showed statistical differences (p < 0.05). All samples met the Korean Industrial Standards for senior foods in terms of viscosity and hardness, while samples with brand G were harder and more viscous than those with XanFlax and the control (p < 0.001). XanFlax samples had greater ABTS radical scavenging activities than the control and brand G samples (p < 0.001). Although, the developed puree can be a possible senior food product without the addition of thickeners, XanFlax might be applied as a non-xanthan gum-based viscosity thickener with antioxidant functions for senior-friendly foods.

19.
Foods ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34828870

RESUMO

Aquafaba (AQ) emulsification properties are determined by genetics and seed processing conditions. The physicochemical properties and hydration rates of chickpea (CDC Leader) as a control with proven emulsifying properties were recently reported. Here, we identify correlations between soybean (Backtae, Seoritae, and Jwinunikong) physical, chemical, and hydration properties as well as AQ yield from seed and functional (emulsion and foaming) properties. In addition, a total of 20 compounds were identified by NMR including alcohols (isopropanol, ethanol, methanol), organic acids (lactic acid, acetic acid, succinic acid, citric acid, and malic acid), sugars (glucose, galactose, arabinose, sucrose, raffinose, stachyose), essential nutrients (choline, phosphocholine), amino acids (alanine, glutamine), and polyphenols (resveratrol, glycitin). The process used in this study utilizes a soaking step to hydrate the seed of the selected Korean soybean cultivars. The product, AQ, is an oil emulsifier and foaming agent, which is suitable for use as an egg substitute with improved emulsion/foam formation properties when compared with a chickpea-based AQ.

20.
Foods ; 10(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34681336

RESUMO

Concerns regarding sustainability have prompted the search of value in the by-products of food manufacturing. Such is the case of the cooking water (CW) of chickpeas, which has shown its potential as a vegan egg white replacement. This study aimed to characterize and compare the CW from three novel legumes (black soybeans, BSB; yellow soybeans, YSB; and small black beans, SBB) obtained from the processing of Korean soybean foods, and the widely used CW from chickpeas (CH), with regard to total polyphenol, total carbohydrate, and protein contents, and further compare their foaming and emulsifying abilities and stabilities. Compositional analysis revealed that all the studied legumes possessed higher values than CH for all parameters. Furthermore, the CW from these legumes exhibited enhanced functional properties, particularly foaming capacity and stability. Taken together, our results suggest that the CW from BSB, YSB, and SBB, sourced from the manufacturing of legume food products, has the potential of being revalorized as a plant-based functional ingredient for vegan product development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA