Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731564

RESUMO

Anion-driven, nanoscale polar-apolar structural organization is investigated in a solvate ionic liquid (SIL) setting by comparing sulfonate-based anions with long and short perfluorinated alkyl chains. Representative SILs are created from 1,2-bis(2-methoxyethoxy)ethane ("triglyme" or "G3"), lithium nonafluoro-1-butanesulfonate, and lithium trifluoromethanesulfonate. Molecular dynamics simulations, density functional theory computations, and vibrational spectroscopy provide insight into the overall liquid structure, cation-solvent interactions, and cation-anion association. Significant competition between G3 and anions for cation-binding sites characterizes the G3-LiC4F9SO3 mixtures. Only 50% of coordinating G3 molecules form tetradentate complexes with Li+ in [(G3)1Li][C4F9SO3]. Moreover, the SIL is characterized by extensive amounts of ion pairing. Based on these observations, [(G3)1Li][C4F9SO3] is classified as a "poor" SIL, similar to the analogous [(G3)1Li][CF3SO3] system. Even though the comparable basicity of the CF3SO3- and C4F9SO3- anions leads to similar SIL classifications, the hydrophobic fluorobutyl groups support extensive apolar domain formation. These apolar moieties permeate throughout [(G3)1Li][C4F9SO3] and persist even at relatively low dilution ratios of [(G3)10Li][C4F9SO3]. By way of comparison, the CF3 group is far too short to sustain polar-apolar segregation. This demonstrates how chemically modifying the anions to include hydrophobic groups can impart unique nanoscale organization to a SIL. Moreover, tuning these nano-segregated fluorinated domains could, in principle, control the presence of dimensionally ordered states in these mixtures without changing the coordination of the lithium ions.

2.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903339

RESUMO

The functionalization of polymers with sulfonate groups has many important uses, ranging from biomedical applications to detergency properties used in oil-recovery processes. In this work, several ionic liquids (ILs) combining 1-alkyl-3-methylimidazolium cations [CnC1im]+ (4 ≤ n ≤ 8) with alkyl-sulfonate anions [CmSO3]- (4 ≤ m ≤ 8) have been studied using molecular dynamics simulations, totalizing nine ionic liquids belonging to two homologous series. The radial distribution functions, structure factors, aggregation analyses, and spatial distribution functions reveal that the increase in aliphatic chain length induces no significant change in the structure of the polar network of the ILs. However, for imidazolium cations and sulfonate anions with shorter alkyl chains, the nonpolar organization is conditioned by the forces acting on the polar domains, namely, electrostatic interactions and hydrogen bonding.

3.
Chemphyschem ; 22(21): 2190-2200, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34464013

RESUMO

This work comprises the study of solubilities of gases in ionic liquids (ILs) using a chemoinformatic approach. It is based on the codification, of the atomic inter-component interactions, cation/gas and anion/gas, which are used to obtain a pattern of activation in a Kohonen Neural Network (MOLMAP descriptors). A robust predictive model has been obtained with the Random Forest algorithm and used the maximum proximity as a confidence measure of a given chemical system compared to the training set. The encoding method has been validated with molecular dynamics. This encoding approach is a valuable estimator of attractive/repulsive interactions of a generical chemical system IL+gas. This method has been used as a fast/visual form of identification of the reasons behind the differences observed between the solubility of CO2 and O2 in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6 ) at identical temperature and pressure (TP) conditions, The effect of variable cation and anion effect has been evaluated.

4.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885741

RESUMO

Many chemical processes rely extensively on organic solvents posing safety and environmental concerns. For a successful transfer of some of those chemical processes and reactions to aqueous media, agents acting as solubilizers, or phase-modifiers, are of central importance. In the present work, the structure of aqueous solutions of several ionic liquid systems capable of forming multiple solubilizing environments were modeled by molecular dynamics simulations. The effect of small aliphatic chains on solutions of hydrophobic 1-alkyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ionic liquids (with alkyl = propyl [C3C1im][NTf2], butyl [C4C1im][NTf2] and isobutyl [iC4C1im][NTf2]) are covered first. Next, we focus on the interactions of sulphonate- and carboxylate-based anions with different hydrogenated and perfluorinated alkyl side chains in solutions of [C2C1im][CnF2n+1SO3], [C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2] and [C2C1im][CH3CO2] (n = 1, 4, 8). The last system considered is an ionic liquid completely miscible with water that combines the cation N-methyl-N,N,N-tris(2-hydroxyethyl)ammonium [N1 2OH 2OH 2OH]+, with high hydrogen-bonding capability, and the hydrophobic anion [NTf2]-. The interplay between short- and long-range interactions, clustering of alkyl and perfluoroalkyl tails, and hydrogen bonding enables a wealth of possibilities in tailoring an ionic liquid solution according to the needs.

5.
Phys Chem Chem Phys ; 22(2): 525-535, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31829360

RESUMO

Equimolar mixtures of lithium bis(trifluoromethanesulfonyl)imide (Li[NTf2]) with triglyme or tetraglyme (small oligoethers) are regarded as a new class of ionic liquids, the so-called solvate ionic liquids. In these mixtures, the glyme molecules wrap around the lithium ions forming crown-ether like [Li(glyme)1]+ complex cations. New molecular dynamics (MD) simulations suggest that the lithium-glyme coordination is stronger than that predicted in a former MD study [K. Shimizu, et al., Phys. Chem. Chem. Phys., 2015, 17, 22321-22335], whereas lithium-NTf2 connections are weaker. The differences between the present and the previous study arise from different starting conditions. Both studies employed charges scaled by a factor of 0.8. As shown by the comparison of MD simulations with and without reduced charges to experiments, charge scaling is necessary in order to obtain data close to experimental results.

6.
Langmuir ; 34(14): 4408-4416, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29485882

RESUMO

At 298 K, the surface tension of ionic liquids (ILs) of the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide series, [C nC1Im][NTf2], ranges from around 35 mN·m-1 for [C2C1Im][NTf2] to just below 30 mN·m-1 for [C12C1Im][NTf2]. However, the decrease rate along the series is not constant: a large decrease from [C2C1Im][NTf2] to [C8C1Im][NTf2] is followed by almost constant values from [C8C1Im][NTf2] to [C12C1Im][NTf2]. Such behavior is hard to interpret from a molecular point of view without suitable information about the free-surface structure of the different ILs. In this work, we have successfully used the Langmuir principle in combination with structural data obtained from angle-resolved X-ray photoelectron spectroscopy experiments and molecular dynamics simulations, to predict the correct surface tension trend along the IL series. The concepts unveiled for this particular homologous IL family can be easily extended to other systems.

7.
Faraday Discuss ; 206: 265-289, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28948252

RESUMO

Small-angle neutron scattering experiments, supported by molecular dynamics simulations, have been performed on a range of compositions of the [C2mim]1-x[C12mim]x[Tf2N] ionic liquid mixture system. Isotopic contrast variation, through selective deuteration of both cations, has been used to assist in fitting the data to different scattering models. These data, and subsequent fitting, show that the structure of the ionic liquid mixtures changes substantially as a function of composition. Mixtures where x < 0.32 are dominated by aggregates of amphiphilic [C12mim]+ ions in the relatively polar [C2mim][Tf2N] solvent. Compositions where x > 0.32 can be described as bicontinuous, containing networks of both polar and non-polar domains, where the C12 chains of the [C12mim]+ ions percolate through the system to form a continuous non-polar sub-phase. Temperature-dependent scattering experiments suggest that there is relatively little change in bulk structure in these liquids between 20 and 60 °C. The presence of water, however, does influence some aspects of the liquid structure in a composition that is rich in [C2mim][Tf2N] (where x = 0.24).

8.
Faraday Discuss ; 206: 203-218, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930331

RESUMO

Ionic liquids combining potassium cations with 1-alkyl-3-methylcyclopentadienyl anions, K[CnC1Cp] (n = 4, 6) have been synthesized. Differential scanning calorimetry measurements have shown that K[C4C1Cp] and K[C6C1Cp] melt without decomposition at around 90 °C. These two ionic liquids are the charge-inverted counterparts of [C4C1Im]Cl and [C6C1Im]Cl, two common ionic liquids. The concept of charge-inverted ionic pairs is used to explore the nature of the interactions and structure in different ionic compounds, from simple alkali halide salts to ionic liquids based on complex molecular ions. Different sets of experimental data, empirical correlations and molecular dynamics simulations are used to that effect.

9.
Phys Chem Chem Phys ; 20(37): 23864-23872, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30069553

RESUMO

Several molecular dynamics (MD) simulations have been performed in order to obtain structural information on ionic liquids (ILs) based on amino-acid anions. Six hydrophilic ILs containing cholinium or imidazolium cations combined with alaninate, glycinate or lysinate anions were modelled using the all-atom CL&P and OPLS-AA force fields. Both pure ILs and their aqueous solutions have been studied. The MD data have allowed us to analyse structure factors, S(q), and pair radial distributions functions, g(r), as well as aggregation patterns and specific interactions. The results have shown us that in neat amino-acid-based ILs the anions interact mainly through their carboxylate moiety with the charged centres of the cations. Both the lack of heavy atoms and the small size of the interacting centre in the anion contribute to the absence of a charge ordering peak in the structure factor functions of the corresponding ILs. In turn, their aqueous solutions reveal the existence of small ionic aggregates. The size distribution of these aggregates is strongly dependent on the solution's concentration. This fact points to the possibility of using amino-acid-based ILs as agents to promote hydrotrope effects, significant for the solubilisation and stabilization of organic molecules and macromolecules in aqueous solution.


Assuntos
Aminoácidos/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Ânions/química , Estrutura Molecular
10.
J Chem Phys ; 148(19): 193808, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307208

RESUMO

The structure of the ionic liquid 1-decyl-1-methylpyrrolidinium bis[(trifluoromethane)sulfonyl]imide, [C10C1Pyrr][NTf2], has been probed using Molecular Dynamics (MD) simulations. The simulations endeavour to model the behaviour of the ionic liquid in bulk isotropic conditions and also at interfaces and in confinement. The MD results have been confronted and validated with scattering and surface force experiments reported in the literature. The calculated structure factors, distribution functions, and density profiles were able to provide molecular and mechanistic insights into the properties of these long chain ionic liquids under different conditions, in particular those that lead to the formation of multi-layered ionic liquid films in confinement. Other properties inaccessible to experiment such as in-plane structures and relaxation rates within the films have also been analysed. Overall the work contributes structural and dynamic information relevant to many applications of ionic liquids with long alkyl chains, ranging from nanoparticle synthesis to lubrication.

11.
Molecules ; 23(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428578

RESUMO

This paper focuses in the influence of halogen atoms in the design and structural control of the crystal packing of Group VIII halogenated metallocenes. The study is based on the present knowledge on new types of intermolecular contacts such as halogen (X⋯X, C-X⋯H, C-X⋯π), π⋯π, and C-H⋯π interactions. The presence of novel C-H⋯M interactions is also discussed. Crystal packings are analysed after database search on this family of compounds. Results are supported by ab initio calculations on electrostatic charge distributions; Hirshfeld analysis is also used to predict the types of contacts to be expected in the molecules. Special attention is given to the competition among hydrogen and halogen interactions, mainly its influence on the nature and geometric orientations of the different supramolecular motifs. Supramolecular arrangements of halogenated metallocenes and Group IV di-halogenated bent metallocenes are also compared and discussed. Analysis supports halogen bonds as the predominant interactions in defining the crystal packing of bromine and iodine 1,1'-halometallocenes.


Assuntos
Halogênios/química , Ligação de Hidrogênio , Metalocenos/química , Cristalografia por Raios X , Modelos Moleculares , Eletricidade Estática
12.
Chemistry ; 22(45): 16113-16123, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27659146

RESUMO

Liquid-crystalline ionic liquids (LCILs) are ordered materials that have untapped potential to be used as reaction media for synthetic chemistry. This paper investigates the potential for the ordered structures of LCILs to influence the stereochemical outcome of the Diels-Alder reaction between cyclopentadiene and methyl acrylate. The ratio of endo- to exo-product from this reaction was monitored for a range of ionic liquids (ILs) and LCILs. Comparison of the endo:exo ratios in these reactions as a function of cation, anion and liquid crystallinity of the reaction media, allowed for the effects of liquid crystallinity to be distinguished from anion effects or cation alkyl chain length effects. These data strongly suggest that the proportion of exo-product increases as the reaction media is changed from an isotropic IL to a LCIL. A detailed molecular dynamics (MD) study suggests that this effect is related to different hydrogen bonding interactions between the reaction media and the exo- and endo-transition states in solvents with layered, smectic ordering compared to those that are isotropic.

13.
Langmuir ; 32(48): 12579-12592, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934518

RESUMO

4,5-Dialkylated imidazolium lipid salts are a new class of lipid analogues showing distinct biological activities. The potential effects of the imidazolium lipids on artificial lipid membranes and the corresponding membrane interactions was analyzed. Therefore, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was employed to create an established lipid monolayer model and a bilayer membrane. Mixed monolayers of DPPC and 4,5-dialkylimidazolium lipids differing by their alkyl chain length (C7, C11, and C15) were characterized by surface pressure-area (π-A) isotherms using a Wilhelmy film balance in combination with epifluorescence microscopy. Monolayer hysteresis for binary mixtures was examined by recording triplicate consecutive compression-expansion cycles. The lipid miscibility and membrane stability of DPPC/imidazolium lipids were subsequently evaluated by the excess mean molecular area (ΔAex) and the excess Gibbs free energy (ΔGex) of mixing. Furthermore, the thermotropic behavior of mixed liposomes of DPPC/imidazolium lipids was investigated by differential scanning calorimetry (DSC). The C15-imidazolium lipid (C15-IMe·HI) forms a thermodynamically favored and kinetically reversible Langmuir monolayer with DPPC and exhibits a rigidification effect on both DPPC monolayer and bilayer structures at low molar fractions (X ≤ 0.3). However, the incorporation of the C11-imidazolium lipid (C11-IMe·HI) causes the formation of an unstable and irreversible Langmuir-Gibbs monolayer with DPPC and disordered DPPC liposomes. The C7-imidazolium lipid (C7-IMe·HI) displays negligible membrane activity. To better understand these results on a molecular level, all-atom molecular dynamics (MD) simulations were performed. The simulations yield two opposing molecular mechanisms governing the different behavior of the three imidazolium lipids: a lateral ordering effect and a free volume/stretching effect. Overall, our study provides the first evidence that the membrane interaction of the C15 and C11 derivatives modulates the structural organization of lipid membranes. On the contrary, for the C7 derivative its membrane activity is too low to contribute to its earlier reported potent cytotoxicity.


Assuntos
Imidazóis/química , Bicamadas Lipídicas/química , Lipídeos/química , Fosfatidilcolinas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Simulação por Computador , Ligação de Hidrogênio , Cinética , Lipossomos/química , Membranas Artificiais , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
14.
Langmuir ; 32(24): 6130-9, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27218210

RESUMO

We have investigated, both theoretically and experimentally, the balance between the presence of alkyl and perfluoroalkyl side chains on the surface organization and surface tension of fluorinated ionic liquids (FILs). A series of ionic liquids (ILs) composed of 1-alkyl-3-methylimidazolium cations ([CnC1im] with n = 2, 4, 6, 8, 10, or 12) combined with the perfluorobutanesulfonate anion was used. The surface tensions of the investigated liquid salts are considerably lower than those reported for non-fluorinated ionic liquids. The most surprising and striking feature is the identification, for the first time, of a minimum at n = 8 in the surface tension versus the length of the IL cation alkyl side chain. Supported by molecular dynamics (MD) simulations, it was found that this trend is a result of the competition between the two nonpolar domains (perfluorinated and aliphatic) pointing toward the gas-liquid interface, a phenomenon which occurs in ILs with perfluorinated anions. Furthermore, these ILs present the lowest surface entropy reported to date.

15.
Phys Chem Chem Phys ; 18(3): 1665-70, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26675139

RESUMO

An extended designed regression analysis of experimental data on density and refractive indices of several classes of ionic liquids yielded statistically averaged atomic volumes and polarizabilities of the constituting atoms. These values can be used to predict the molecular volume and polarizability of an unknown ionic liquid as well as its mass density and refractive index. Our approach does not need information on the molecular structure of the ionic liquid, but it turned out that the discrimination of the hybridization state of the carbons improved the overall result. Our results are not only compared to experimental data but also to quantum-chemical calculations. Furthermore, fractional charges of ionic liquid ions and their relation to polarizability are discussed.

16.
Phys Chem Chem Phys ; 18(26): 17224-36, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26845292

RESUMO

The bulk nanostructures of a prototypical 'good' solvate ionic liquid (SIL) and 'poor' SIL have been examined using neutron diffraction and empirical potential structure refinement (EPSR) simulated fits. The good SIL formed by a 1 : 1 mixture of lithium bis(trifluoromethylsulfonyl)imide (Li[TFSI]) in tetraglyme (G4), denoted [Li(G4)][TFSI], and the poor SIL formed from a 1 : 1 mixture of lithium nitrate (Li[NO3]) in G4, denoted [Li(G4)][NO3], have been studied. In both SILs there are strong Lewis acid-base interactions between Li(+) and ligating O atoms. However, the O atoms coordinated to Li(+) depend strongly on the counter anion present. LiO coordination numbers with G4 are 2-3 times higher for [Li(G4)][TFSI] than [Li(G4)][NO3], and conversely the LiO anion coordination number is 2-3 times higher in [Li(G4)][NO3]. In both solvates the local packing of Li around G4 O atoms are identical but these interactions are less frequent in [Li(G4)][NO3]. In both SILs, Li(+) has a distribution of coordination numbers and a wide variety of different complex structures are present. For [Li(G4)][NO3], there is a significant proportion uncoordinated G4 in the bulk; ∼37% of glyme molecules have no LiO contacts and each G4 molecule coordinates to an average of 0.5 Li(+) cations. Conversely, in [Li(G4)][TFSI] only ∼5% of G4 molecules lack LiO contacts and G4 molecules coordinates to an average of 1.3 Li(+) cations. Li(+) and G4 form polynuclear complexes, of the form [Lix(G4)y](x+), in both solvates. For [Li(G4)][TFSI] ∼35% of Li(+) and G4 form 1 polynuclear complexes, while only ∼10% of Li(+) and G4 form polynuclear complexes in [Li(G4)][NO3].

17.
Langmuir ; 31(30): 8371-8, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26161843

RESUMO

The behavior of ionic liquids trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide and trihexyl(tetradecyl)phosphonium dicyanamide, [P6 6 6 14][Ntf2] and [P6 6 6 14][N(CN)2], respectively, at the water-air interface was investigated using the Langmuir trough technique. The obtained surface pressure versus mean molecular area (MMA) isotherms, π-A, and surface potential versus MMA isotherms, ΔV-A, show distinct interfacial behavior between the two systems. The results were interpreted at a molecular level using molecular dynamics simulations: the different compression regimes along the [P6 6 6 14][Ntf2] isotherm correspond to the self-organization of the ions at the water surface into compact and planar monolayers that coalesce at an MMA value of ca. 1.85 nm(2)/ion pair to form an expanded liquidlike layer. Upon further compression, the monolayer collapses at around 1.2 nm(2)/ion pair to yield a progressively thicker and less organized layer. These transitions are much more subdued in the [P6 6 6 14][N(CN)2] system because of the more hydrophilic nature of the dicyanamide anion. The numerical density profiles obtained from the MD simulation trajectories are also able to emphasize the very unusual packing of the four long alkyl side chains of the cation above and below the ionic layer that forms at the water surface. Such a distribution is also different for the two studied systems during the different compression regimes.

18.
Phys Chem Chem Phys ; 17(45): 30328-42, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26506981

RESUMO

The solubility of n-butane and 2-methylpropane (isobutane) in three ionic liquids - 1-(2-methylpropyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(2mC3)C1im][Ntf2], 1-(3-methylbutyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(3mC4)C1im][Ntf2] and 1-methyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide [C5C1im][Ntf2] - has been measured at atmospheric pressure from 303 to 343 K. Isobutane is less soluble than n-butane in all the ionic liquids. Henry's constant values range from 13.8 × 10(5) Pa for n-butane in [C5C1im][Ntf2] at 303 K to 64.5 × 10(5) Pa for isobutane in [(2mC3)C1im][Ntf2] at 343 K. The difference in solubility between the two gases can be explained by a more negative enthalpy of solvation for n-butane. A structural analysis of the pure solvents and of the solutions of the gases, probed by molecular dynamics simulations, could explain the differences found in the systems: (i) the nonpolar domains of the ionic liquids accommodate better the long and more flexible n-butane solute; (ii) the small differences in solubility of each gas in the ionic liquids with the same number of carbon atoms in the alkyl side-chains are explained by the absence of large structural differences in the pure solvents. In all cases, the structural analysis of the four ionic liquids confirms that the studied gases can act as probes of the molecular structure of the ionic liquids, the simulations being always compatible with the experimental solubility data.

19.
Phys Chem Chem Phys ; 17(34): 22321-35, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26245295

RESUMO

The structure and interactions of different (Li salt + glyme) mixtures, namely equimolar mixtures of lithium bis(trifluoromethylsulfonyl)imide, nitrate or trifluoroacetate salts combined with either triglyme or tetraglyme molecules, are probed using Molecular Dynamics simulations. structure factor functions, calculated from the MD trajectories, confirmed the presence of different amounts of lithium-glyme solvates in the aforementioned systems. The MD results are corroborated by S(q) functions derived from diffraction and scattering data (HEXRD and SAXS/WAXS). The competition between the glyme molecules and the salt anions for the coordination to the lithium cations is quantified by comprehensive aggregate analyses. Lithium-glyme solvates are dominant in the lithium bis(trifluoromethylsulfonyl)imide systems and much less so in systems based on the other two salts. The aggregation studies also emphasize the existence of complex coordination patterns between the different species (cations, anions, glyme molecules) present in the studied fluid media. The analysis of such complex behavior is extended to the conformational landscape of the anions and glyme molecules and to the dynamics (solvate diffusion) of the bis(trifluoromethylsulfonyl)imide plus triglyme system.

20.
Langmuir ; 30(22): 6408-18, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24834955

RESUMO

Aiming at providing a comprehensive study of the influence of the cation symmetry and alkyl side chain length on the surface tension and surface organization of ionic liquids (ILs), this work addresses the experimental measurements of the surface tension of two extended series of ILs, namely R,R'-dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(n)im][NTf2]) and R-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(1)im][NTf2]), and their dependence with temperature (from 298 to 343 K). For both series of ILs the surface tension decreases with an increase in the cation side alkyl chain length up to aliphatic chains no longer than hexyl, here labeled as critical alkyl chain length (CACL). For ILs with aliphatic moieties longer than CACL the surface tension displays an almost constant value up to [C12C12im][NTf2] or [C16C1im][NTf2]. These constant values further converge to the surface tension of long chain n-alkanes, indicating that, for sufficiently long alkyl side chains, the surface ordering is strongly dominated by the aliphatic tails present in the IL. The enthalpies and entropies of surface were also derived and the critical temperatures were estimated from the experimental data. The trend of the derived thermodynamic properties highlights the effect of the structural organization of the IL at the surface with visible trend shifts occurring at a well-defined CACL in both symmetric and asymmetric series of ILs. Finally, the structure of a long-alkyl side chain IL at the vacuum-liquid interface was also explored using Molecular Dynamics simulations. In general, it was found that for the symmetric series of ILs, at the outermost polar layers, more cations point one of their aliphatic tails outward and the other inward, relative to the surface, than cations pointing both tails outward. The number of the former, while being the preferred conformation, exceeds the latter by around 75%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA