Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1155: 611-626, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468435

RESUMO

In this study, the antioxidant properties of Viviparus contectus (V. contectus) extract were evaluated for various radical scavenging activities, ferric reducing antioxidant power (FRAP), ABTS radical scavenging activity and oxygen radical absorbance capacity (ORAC). In addition, inhibition effect of the V. contectus extract against DNA scission induced by hydroxyl radical was measured. We also studied the protective effect of V. contectus extract against oxidative damage through measurements of intracellular reactive oxygen species (ROS) in Chang cells and zebrafish embryo. We found that V. contectus extract contains strong radical scavenging activities and antioxidant properties, which prevent tert-butylhydroperoxide (t-BHP)-induced oxidative stress, enhance cell viability, reduce ROS production, inhibit oxidative damage and improve mitochondrial function in Chang cells. Also, we determined that the V. contectus extract reduced ROS production mediated by t-BHP induced oxidative stress on zebrafish embryo.


Assuntos
Antioxidantes/farmacologia , Extratos Celulares/farmacologia , Gastrópodes/química , Estresse Oxidativo , Animais , Linhagem Celular , Embrião não Mamífero , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra , terc-Butil Hidroperóxido
2.
Adv Exp Med Biol ; 1155: 627-641, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468436

RESUMO

Atrina pectinata (A. pectinata), called pen shell, is an edible shellfish that adheres to the seabed pointed downward and has a triangular shell reaching about 40 cm in length.In this study, we examined the antioxidant effect of an A. pectinata extract exhibiting various radical scavenging activities. These scavenging activities were evaluated using electron spin resonance. Anti-oxidant activities were also determined using the ferric reducing antioxidant power (FRAP) and the ABTS radical scavenging assays. Lipid peroxidation inhibitory activity was confirmed using ferric thiocyanate and thiobarbituric acid assays. Furthermore, the protective effect of the A. pectinata extract against t-BHP-induced oxidative stress on Chang cells were evaluated using MTT assay and the measurement of reactive oxygen species (ROS). These results showed that the A. pectinata extract have strong radical scavenging activities, and exerts protective effect against oxidative stress through reducing intracellular ROS content of Chang cells.


Assuntos
Antioxidantes/farmacologia , Bivalves/química , Extratos Celulares/farmacologia , Estresse Oxidativo , Animais , Linhagem Celular , Humanos , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo
3.
Adv Exp Med Biol ; 1155: 1001-1014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468463

RESUMO

Batillaria multiformis (B. multiformis) belong to gastropods. They live generally in the sandpit of the lagoons and the estuaries of the intertidal zone. Most of them are distributed in Korea, Japan and China. In this study, we investigated the anti-inflammatory potential of B. multiformis water extracts (BMW). The results showed that the extracts significantly decreased the production of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in LPS-induced RAW 264.7 macrophages. In addition, the extracts suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Further investigation indicated that BMW suppressed phosphorylated c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK) and p38 through the MAPK signaling pathway and influenced the NF-κB signaling pathway by suppressing the IκBα degradation in LPS-induced RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Celulares/farmacologia , Gastrópodes/química , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Água
4.
Adv Exp Med Biol ; 1155: 1069-1081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468468

RESUMO

Scallops belong to cosmopolitan family of bivalves which are found in any oceans. They are one of the most important marine fishery resources in the world. The shell, meat and pearl layer have a high utilization value and a lot of scallops are eaten as food. In this study, we established anti-inflammatory effect of Scallops water extract in lipopolysaccharide (LPS) stimulated RAW 264.7 mononuclear macrophage. Our results indicated that Scallop water extract effectively reduced the synthesis of nitric oxide (NO). In addition, Scallop water extract suppressed the reactive oxygen species (ROS) generation and the expression of IL-6 and TNF-α. Further investigation indicated that anti-inflammatory effect of Scallop water extract via suppressing downregulation of MAPK (JNK, p38 and ERK) and NF-κB signaling.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Celulares/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Pectinidae/química , Animais , Citocinas/metabolismo , Inflamação , Lipopolissacarídeos , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
5.
Adv Exp Med Biol ; 975 Pt 2: 1179-1190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28849532

RESUMO

This study aimed to investigate the effect of doxorubicin co-treatment with taurine on B16F10 melanoma cells. Frequently, Doxorubicin is used in the treatments of many different kinds of cancers, some of which are soft tissue sarcomas, hematological malignancies and carcinomas. However, the clinical application of doxorubicin is compromised by its severe adverse effects, including cardiotoxicity. In the present study, the efficacy of doxorubicin co-treatment with taurine was investigated. B16F10 cell viability was evaluated using MTT assays, trypan blue dye exclusion assays, and fluorescent staining technique. Apoptotic cells were detected by flow cytometry and the proteins associated with apoptosis and cellular differentiations were assessed by immunoblotting. Doxorubicin inhibited cell growth and induced cell death in B16F10 cells. Interestingly, doxorubicin co-treatment with taurine inhibited apoptosis in B16F10 cells. These results indicate that doxorubicin co-treatment with taurine attenuates doxorubicin-induced cytotoxicity and reduces ROS production in B16F10 cells.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Doxorrubicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Taurina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Melanoma Experimental , Camundongos , Espécies Reativas de Oxigênio
6.
Adv Exp Med Biol ; 975 Pt 1: 243-254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28849460

RESUMO

Oxidative stress mediates the cell damage in several neurodegenerative diseases, some of which are Alzheimer's disease (AD), multiple sclerosis and Parkinson's disease (PD). In this study, we investigated whether the taurine-rich cuttlefish extract could exert a protective effect on damaged human neuroblastoma SH-SY5Y cells induced by hydrogen peroxide (H2O2). Our results revealed that pre-treatment with cuttlefish extract effectively increased the cell viability by protecting the cells from intracellular reactive oxygen species (ROS) induced by H2O2 exposure. Furthermore, apoptosis related proteins Bcl-2 and Bax were investigated by western-blot analysis and results indicated that cuttlefish extract promoted the expression of anti-apoptotic Bcl-2 protein while inhibiting the expression of pro-apoptotic Bax protein. Therefore, cuttlefish extract containing the ability of scavenging excessive ROS, the capacity of anti-oxidative stress, could be employed in neurodegenerative disease prevention. In conclusion, the results suggest that cuttlefish extract could be used as a potential candidate for preventing several human neurodegenerative and other disorders caused by oxidative stress.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sepia/química , Taurina/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Misturas Complexas/farmacologia , Humanos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos
7.
Molecules ; 22(5)2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28441343

RESUMO

Althaea rosea (Linn.) is a medicinal plant from China and Korea that has been traditionally used to control inflammation, to stop bedwetting and as a mouthwash in cases of bleeding gums. Its flowers are employed medicinally for their emollient, demulcent and diuretic properties, which make them useful in chest complaints. Furthermore, a flower extract decoction is used to improve blood circulation, for the treatment of constipation, dysmenorrhoea, haemorrhages, etc. However, the possible mechanisms of the immune-stimulatory effect remains to be elucidated. Therefore, we investigated the role of Althaea rosea flower (ARF) extracts in the immune-stimulatory effect of macrophages and the underlying mechanisms of action. ARF water extract (ARFW) could dose-dependently increase NO production and cytokines (IL-6 and TNF-α). We also found that ARFW significantly increased the expression of iNOS and COX-2 proteins in RAW264.7 cells. Consistent with these results, MAPK protein (JNK, ERK, p38) expression levels were induced after treatment with ARFW. Additionally, ARFW showed a marked increase in the phosphorylation level of IκBα and subsequent IκBα degradation allowing NF-κB nuclear translocation. These results suggest that the immune-stimulatory effect of A. rosea flower extracts is mediated through the translocation of NF-κB p65 subunit into the nucleus from the cytoplasm and subsequent activation of pro-inflammatory cytokines (IL-6 and TNF-α) and other mediators (iNOS and COX-2), which occurs mainly through MAPK signalling pathway. Thus, we suggest that ARFW could be considered as a potential therapeutic agent useful in the development of immune-stimulatory compounds.


Assuntos
Adjuvantes Imunológicos/farmacologia , Althaea/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Flores/química , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
8.
J Med Food ; 22(5): 508-520, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31084540

RESUMO

In this study, we investigated the antioxidant and protective effect of Lindera glauca stem (LGS) extracts against oxidative stress. We compared antioxidant properties of water extract (LGSW) with ethanol extract (LGSE) by determining the contents responsible for antioxidant activities such as polyphenols and flavonoids. Antioxidant properties were also determined by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and ferric reducing antioxidant power (FRAP). Lipid peroxidation was estimated using ferric thiocyanate (FTC) and thiobarbituric acid (TBA) method. Both LGSW and LGSE strongly inhibited lipid peroxidation. Especially, LGSE showed a protective effect through increasing cell viability, decreasing intracellular reactive oxygen species (ROS) against tert-butyl hydroperoxide-induced oxidative stress in Chang cells. Furthermore, LGSE increased antioxidant related enzyme activities such as catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase gene expression against oxidative stress in a zebrafish model. Our findings suggest that LGSE could be useful for developing potential therapeutic agents with protective effects against oxidative stress.


Assuntos
Lindera/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/química , terc-Butil Hidroperóxido/farmacologia , Catalase/metabolismo , Linhagem Celular , Glutationa Peroxidase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Extratos Vegetais/química , Caules de Planta/química , Polifenóis/química , Polifenóis/farmacologia , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , terc-Butil Hidroperóxido/química
9.
Food Sci Biotechnol ; 26(6): 1633-1640, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30263700

RESUMO

In our previous work, Asterina pectinifera was fermented with Cordyceps militaris mycelia to improve its bioactivities and was reported to have strong antioxidant activities. The aim of the current study was to investigate its anti-inflammatory effect and mechanisms of action. In this study, we observed the inhibitory effect of the extract from fermented A. pectinifera with C. militaris mycelia (FACM) on nitric oxide (NO) production and its molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. FACM could decrease LPS-induced NO production. Western blot analysis showed that FACM could down-regulate LPS-induced expression of inducible NO synthase without affecting cyclooxygenase-2. Moreover, FACM exhibited anti-inflammatory activity in LPS-induced RAW264.7 mouse macrophage cells through proinflammatory mediators including TNF-α and IL-6 via nuclear factor kappa B pathway. FACM inhibited LPS-induced phosphorylation of extracellular-signal-regulated kinase expression. Our results suggest that FACM may be a potential candidate for inflammation therapy by attenuating the generation of cytokines, production of NO, and generation of ROS in RAW264.7 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA