Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352510

RESUMO

Capsicum peppers, peppers from plants of the genus Capsicum (family Solanaceae), are widely cultivated in South Korea, where annual production was 92,756 tons in 2021, 54.4% higher than that of the previous year. Occurring throughout the production cycle, anthracnose is a major disease limiting commercial Capsicum pepper production worldwide, including in South Korea. This study investigates the diversity and pathogenicity of Colletotrichum species responsible for Capsicum pepper anthracnose in Gyeongbuk, South Korea, focusing on disease incidence and symptomatology in the field and the identification, morphological characteristics, pathogenicity, and fungicide sensitivity of the causative species. Disease incidence ranged from 30 to 50%, with samples categorized into three distinct symptom types, aiding accurate field diagnosis. Phylogenetic analysis classified 41 isolates into six species in the acutatum, gloeosporioides, and truncatum species complexes, revealing significant genetic diversity. Morphological characterization supported these identifications, providing a comprehensive profiling. Pathogenicity tests confirmed that all identified species induced typical anthracnose lesions, with lesion size variations suggesting differential aggressiveness. Temperature significantly influenced mycelial growth, with optimal growth between 20 and 26°C, and C. truncatum demonstrating high-temperature tolerance.In vitro fungicide sensitivity tests showed variable responses, with tebuconazole being generally effective. These findings underscore the need for species-specific fungicide recommendations and highlight the importance of continuous monitoring of Colletotrichum species. Future research should explore the molecular mechanisms of pathogenicity, host specificity, and fungicide resistance, integrating these findings with breeding programs to develop resistant pepper varieties. This study provides critical insights for effective anthracnose management in pepper cultivation and future research directions.

2.
Plant Dis ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856656

RESUMO

Spotted laurel (Aucuba japonica) is a popular ornamental bush (it has two-colored leaves and red berries) and is used outdoors and indoors for decoration in South Korea. Anthracnose reduces the aesthetic value of spotted laurel leaves. In August 2022, anthracnose symptoms were observed on leaves in a park at Jeju Island, South Korea. Approximately 55% of bushes were infected by this disease. Symptoms consisted of round or irregular lesions that initially appeared as black spots and coalesced into larger, black lesions covering whole leaves and twigs. Entire leaves wither and finally die. To identify the putative causal agent, 12 affected leaves were collected, placed in a plastic box containing moist tissue, and incubated at 25 ºC in the dark to obtain conidial mass. Conidial masses were produced on leaf lesions after 2 days, and then 12 morphologically similar fungal isolates were recovered following single the spore isolation technique on solid potato dextrose agar (PDA) (Cai et al. 2009). Ten-day-old colonies were olivaceous gray with immersed perithecia on the upper side and black at the center on the reverse side. Conidia were aseptate, cylindrical with round ends and measured 14.9 - 22.7 × 5.5 - 9.4 µm (n = 80). Appressoria were brown, irregular in shape, and 7.0 - 16.1 × 5.00 - 9.9 µm (n = 50). Asci were eight-spored, banana-shaped, and measuring 60.8 - 123.1 × 13.00 - 18.9 µm (n = 30). Hyaline ascospores were single-celled, curved or straight with round ends, and ranged in size was 15.5 - 23.3 × 5.1 - 11.8 µm (n = 50). The morphological characteristics of the isolates overlapped with those of Colletotrichum species within the C. gloeosporioides complex, including Colletotrichum fructicola (Weir et al. 2012). Five genomic DNA loci of the isolates, including the partial ITS rDNA region, ACT, GAPDH, TUB, and ApMat genes, were amplified and sequenced using ITSF1/ITS4, ACT-512F/ACT-783R, GDF/GDR, T1/Bt2b, and AM-F/AM-R, respectively (Silva et al. 2012; Weir et al. 2012). The resulting consensus sequences were deposited in the GenBank and the accession numbers (ITS = LC739331- LC739334, TUB = LC739335- LC739338, GAPDH = LC739339- LC739342, ACT = LC739343 -LC739346, ApMat = LC742925 - LC742928) were obtained. A maximum phylogenetic tree was constructed based on the combined data sets of ITS, ACT, GAPDH, TUB, ApMat sequences. The isolates were clustered with reference isolates of C. fructicola (isolates ICMP18581). The pathogenicity test was performed on uninfected, healthy spotted laurel cuttings in the pot. Five leaves per seedling were selected, surface sterilized with 70% ethanol, and rinsed with sterile distilled water (SDW). A sterile pin was used to make 3 to 4 wounds on each side of the leaf from the midrib. 10 µl of spore suspension per wound spot (1 × 106 spores/ml) was applied on the wounds of one site from midrib, and SDW was placed on the wounds of other site as a control. The treated seedlings were covered with sterile plastic bag and kept in a 12-h fluorescent light/dark cycle under greenhouse conditions at 25 ± 2°C and 80% relative humidity. Two seedlings were inoculated with a single isolate, and this experiment was repeated twice. Circular or irregular lesions appeared after 5 days of inoculation, while the control remained asymptotic. Koch's postulates were fulfilled by reisolating and reidentifying the causal agent from the lesions of inoculated leaves. Colletotrichum fructicola has been reported as the causal agent of anthracnose on mango (Joa et al. 2016), apple (Kim et al. 2018), grapes (Lim et al. 2019), peaches (Lee et al. 2020), and hybrid pear (Choi et al. 2021) in South Korea. To the best of our knowledge, it is the first report of C. fructicola causing anthracnose on spotted laurel. This study will be helpful to develop effective management strategies to minimize leaf lesions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA