Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(16): 162701, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306775

RESUMO

We have performed the first direct measurement of two resonances of the ^{7}Be(α,γ)^{11}C reaction with unknown strengths using an intense radioactive ^{7}Be beam and the DRAGON recoil separator. We report on the first measurement of the 1155 and 1110 keV resonance strengths of 1.73±0.25(stat)±0.40(syst) eV and 125_{-25}^{+27}(stat)±15(syst) meV, respectively. The present results have reduced the uncertainty in the ^{7}Be(α,γ)^{11}C reaction rate to ∼9.4%-10.7% over T=1.5-3 GK, which is relevant for nucleosynthesis in the neutrino-driven outflows of core-collapse supernovae (νp process). We find no effect of the new, constrained reaction rate on νp-process nucleosynthesis.

2.
Phys Rev Lett ; 115(5): 052702, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274415

RESUMO

26Al is an important radioisotope in astrophysics that provides evidence of ongoing nucleosynthesis in the Galaxy. The 23Na(α, p)26Mg reaction has been identified by a sensitivity study as being one of the most important reactions for the production of 26Al in the convective C/Ne burning shell of massive stars. Owing to large uncertainties in previous experimental data, model calculations are used for the reaction rate of 23Na(α, p)26Mg in this sensitivity study. Current experimental data suggest a reaction rate a factor of ∼40 higher than model calculations. However, a new measurement of this reaction cross section has been made in inverse kinematics in the energy range E(c.m.)=1.28-3.15 MeV at TRIUMF, and found to be in reasonable agreement with the model calculation. A new reaction rate is calculated and tight constraints on the uncertainty in the production of 26Al, due to this reaction, are determined.

3.
Phys Rev Lett ; 100(19): 192502, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18518445

RESUMO

The p((11)Li, (9)Li)t reaction has been studied for the first time at an incident energy of 3A MeV at the new ISAC-2 facility at TRIUMF. An active target detector MAYA, built at GANIL, was used for the measurement. The differential cross sections have been determined for transitions to the (9)Li ground and first excited states in a wide range of scattering angles. Multistep transfer calculations using different (11)Li model wave functions show that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA