Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Recognit ; 36(7): e3021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37092713

RESUMO

Visceral leishmaniasis (VL) is caused by Leishmania donovani (Ld), and most cases occur in Brazil, East Africa, and India. The treatment for VL is limited and has many adverse effects. The development of safer and more efficacious drugs is urgently needed. Drug repurposing is one of the best processes to repurpose existing drugs. Ornithine decarboxylase (ODC) is an important target against L. donovani in the polyamine biosynthesis pathway. In this study, we have modeled the 3D structure of ODC and performed high-throughput virtual screening of 8630 ZINC database ligands against Leishmania donovani ornithine decarboxylase (Ld ODC), selecting 45 ligands based on their high binding score. It is further validated through molecular docking simulation and the selection of the top two lead molecules (ceftaroline fosamil and rimegepant) for Molecular Dynamics (MD) simulation, Density functional theory (DFT), and molecular mechanics generalized born surface area (MMGBSA) analysis. The results showed that the binding affinities of ceftaroline fosamil, and rimegepant are, respectively, -10.719 and 10.159 kcal/mol. The docking complexes of the two lead compounds, ceftaroline fosamil, and rimegepant, with the target ODC, were found stable during molecular dynamics simulations. Furthermore, the analysis of MMGBSA revealed that these compounds had a high binding free energy. The DFT analysis showed that the top lead molecules were more reactive than the standard drug (pentamidine). In-silico findings demonstrated that ceftaroline fosamil, and rimegepant might be recognized as potent antagonists against ODC for the treatment of VL.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Inibidores da Ornitina Descarboxilase/química , Inibidores da Ornitina Descarboxilase/farmacologia , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Ornitina Descarboxilase/química , Ornitina Descarboxilase/metabolismo , Ornitina Descarboxilase/farmacologia , Ligantes , Leishmania donovani/metabolismo , Ceftarolina
2.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298090

RESUMO

Recent studies in nanomedicine have intensively explored the prospective applications of surface-tailored graphene oxide (GO) as anticancer entity. However, the efficacy of nonfunctionalized graphene oxide nanolayers (GRO-NLs) as an anticancer agent is less explored. In this study, we report the synthesis of GRO-NLs and their in vitro anticancer potential in breast (MCF-7), colon (HT-29), and cervical (HeLa) cancer cells. GRO-NLs-treated HT-29, HeLa, and MCF-7 cells showed cytotoxicity in the MTT and NRU assays via defects in mitochondrial functions and lysosomal activity. HT-29, HeLa, and MCF-7 cells treated with GRO-NLs exhibited substantial elevations in ROS, disturbances of the mitochondrial membrane potential, an influx of Ca2+, and apoptosis. The qPCR quantification showed the upregulation of caspase 3, caspase 9, bax, and SOD1 genes in GRO-NLs-treated cells. Western blotting showed the depletion of P21, P53, and CDC25C proteins in the above cancer cell lines after GRO-NLs treatment, indicating its function as a mutagen to induce mutation in the P53 gene, thereby affecting P53 protein and downstream effectors P21 and CDC25C. In addition, there may be a mechanism other than P53 mutation that controls P53 dysfunction. We conclude that nonfunctionalized GRO-NLs exhibit prospective biomedical application as a putative anticancer entity against colon, cervical, and breast cancers.


Assuntos
Neoplasias da Mama , Proteína Supressora de Tumor p53 , Humanos , Feminino , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Nanomedicina , Apoptose , Células MCF-7 , Colo/metabolismo
3.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687120

RESUMO

We investigated the anticancer mechanism of a chloroform extract of marine sponge (Haliclona fascigera) (sample C) in human breast adenocarcinoma (MCF-7) cells. Viability analysis using MTT and neutral red uptake (NRU) assays showed that sample C exposure decreased the proliferation of cells. Flow cytometric data exhibited reactive oxygen species (ROS), nitric oxide (NO), dysfunction of mitochondrial potential, and apoptosis in sample C-treated MCF-7 cells. A qPCR array of sample C-treated MCF-7 cells showed crosstalk between different pathways of apoptosis, especially BIRC5, BCL2L2, and TNFRSF1A genes. Immunofluorescence analysis affirmed the localization of p53, bax, bcl2, MAPKPK2, PARP-1, and caspase-3 proteins in exposed cells. Bioassay-guided fractionation of sample C revealed Neviotin A as the most active compound triggering maximum cell death in MCF-7, indicating its pharmacological potency for the development of a drug for the treatment of human breast cancer.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Células MCF-7 , Morte Celular , Apoptose
4.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35409358

RESUMO

Tris (2-ethylhexyl) phosphate (TEHP) is an organophosphate flame retardant (OPFRs) which is extensively used as a plasticizer and has been detected in human body fluids. Contemporarily, toxicological studies on TEHP in human cells are very limited and there are few studies on its genotoxicity and cell death mechanism in human liver cells (HepG2). Herein, we find that HepG2 cells exposed to TEHP (100, 200, 400 µM) for 72 h reduced cell survival to 19.68%, 49.83%, 58.91% and 29.08%, 47.7% and 57.90%, measured by MTT and NRU assays. TEHP did not induce cytotoxicity at lower concentrations (5, 10, 25, 50 µM) after 24 h and 48 h of exposure. Flow cytometric analysis of TEHP-treated cells elevated intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca++ influx and esterase levels, leading to mitochondrial dysfunction (ΔΨm). DNA damage analysis by comet assay showed 4.67, 9.35, 13.78-fold greater OTM values in TEHP (100, 200, 400 µM)-treated cells. Cell cycle analysis exhibited 23.1%, 29.6%, and 50.8% of cells in SubG1 apoptotic phase after TEHP (100, 200 and 400 µM) treatment. Immunofluorescence data affirmed the activation of P53, caspase 3 and 9 proteins in TEHP-treated cells. In qPCR array of 84 genes, HepG2 cells treated with TEHP (100 µM, 72 h) upregulated 10 genes and downregulated 4 genes belonging to a human cancer pathway. Our novel data categorically indicate that TEHP is an oxidative stressor and carcinogenic entity, which exaggerates mitochondrial functions to induce cyto- and genotoxicity and cell death, implying its hepatotoxic features.


Assuntos
Fosfatos , Transcriptoma , Dano ao DNA , Humanos , Fígado , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade
5.
Neurochem Res ; 46(2): 171-182, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33052512

RESUMO

The antioxidant, anti-inflammatory, and anticancer activities of Withania somnifera (WS) are known for a long time. This study was aimed to examine whether WS also diminishes 4-hydroxy-trans-2-nonenal (HNE)-induced neurotoxicity in human neuroblastoma (SH-SY5Y) cell line. The cytotoxic response of HNE (0.1-50 µM) and WS (6.25-200 µg/ml) was measured by MTT assay after exposing SH-SY5Y cells for 24 h. Then neuroprotective potential was assessed by exposing the cells to biologically safe concentrations of WS (12.5, 25, and 50 µg/ml) then HNE (50 µM). Results showed a concentration-dependent protective effect of WS at 12.5, 25, and 50 µg/ml against HNE (50 µM) induced cytotoxicity and cell inhibition. Pre-exposure to WS resulted in a strong inhibition of 24, 55 and 83% in malondialdehyde (MDA) level; 5, 27 and 60% in glutathione (GSH) level; 12, 36 and 68% in catalase activity; 11, 33 and 67% in LDH leakage; and 40, 80 and 120% in cellular LDH activity at 12.5, 25, and 50 µg/ml, respectively, induced by 50 µM HNE in SH-SY5Y cells. The HNE-mediated cellular changes (cell shrinkage, rounded bodies, and inhibition of outgrowth) and increased caspase-3 activity were also prevented by WS. The HNE-induced upregulation of proapoptotic markers (p53, caspase-3, and -9, and Bax) and downregulation of antiapoptotic marker Bcl-2 genes were also blocked by pretreatment with WS. Altogether, our findings indicate that WS possesses a protective potential against HNE-induced neurotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Withania/química , Aldeídos/toxicidade , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
6.
J Appl Toxicol ; 41(5): 847-860, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629750

RESUMO

Carbofuran is a broad-spectrum carbamate insecticide, which principally inhibits the acetylcholinesterase (AChE) enzyme in the nervous system. Nonetheless, their selective action is not restricted to a single species and expanded to humans. No studies are available on the toxicological effects of carbofuran in the endothelial cells (ECs), which first confronts the toxicants in blood vessels. Hence, we have exposed the human umbilical vein ECs (HUVECs) with carbofuran for 24 h, which significantly reduced the cell survival to 25.16% and 33.48% at 500 and 1,000 µM analyzed by MTT assay. In the neutral red uptake (NRU) assay, 16.68%, 30.99%, and 58.11% survival decline was found at 250, 500, and 1,000 µM of carbofuran. HUVECs exposed to carbofuran showed significant increase in the intracellular reactive oxygen species (ROS), indicating oxidative stress at low concentrations. In parallel, HUVECs showed hyperpolarization effects in the mitochondrial membrane potential (ΔΨm) upon carbofuran exposure. Carbofuran induced DNA damage in HUVECs measured as 8.80, 11.82, 35.56, and 79.69 Olive tail moment (OTM) in 100-, 250-, 500-, and 1,000-µM exposure groups. Flow cytometric analysis showed apoptotic peak (SubG1) and G2M arrest in the HUVECs exposed to carbofuran. Overall, our novel data confirm that carbofuran is toxic for the EC cells, especially at the higher concentrations, which may affect the vascular functions and possibly angiogenesis. Hence, carbofuran should be applied judiciously, and detailed vascular studies are warranted to gain an in-depth information focusing the transcriptomic and translation changes employing suitable in vivo and in vitro test models.


Assuntos
Carbofurano/toxicidade , Inseticidas/toxicidade , Acetilcolinesterase/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
J Appl Toxicol ; 41(5): 832-846, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33427323

RESUMO

Pesticides have adverse effects on the cellular functionality, which may trigger myriad of health consequences. However, pesticides-mediated toxicity in the endothelial cells (ECs) is still elusive. Hence, in this study, we have used human umbilical vein endothelial cells (HUVECs) as a model to quantify the cytotoxicity and genotoxicity of four pesticides (methomyl, carbaryl, metalaxyl, and pendimethalin). In the MTT assay, HUVECs exposed to methomyl, carbaryl, metalaxyl, and pendimethalin demonstrated significant proliferation inhibition only at higher concentrations (500 and 1000 µM). Likewise, neutral red uptake (NRU) assay also showed proliferation inhibition of HUVECs at 500 and 1000 µM by the four pesticides, confirming lysosomal fragility. HUVECs exposed to the four pesticides significantly increased the level of intracellular reactive oxygen species (ROS). Comet assay and flow cytometric data exhibited DNA damage and apoptotic cell death in HUVECs after 24 h of exposure with methomyl, metalaxyl, carbaryl, and pendimethalin. This is a first study on HUVECs signifying the cytotoxic-genotoxic and apoptotic potential of carbamate insecticides (methomyl and carbaryl), fungicide (metalaxyl), and herbicide (pendimethalin). Overall, these pesticides may affect ECs functions and angiogenesis; nonetheless, mechanistic studies are warranted from the perspective of vascular biology using in vivo test models.


Assuntos
Alanina/análogos & derivados , Compostos de Anilina/toxicidade , Carbaril/toxicidade , Metomil/toxicidade , Praguicidas/toxicidade , Alanina/toxicidade , Ensaio Cometa , Dano ao DNA , Herbicidas , Células Endoteliais da Veia Umbilical Humana , Humanos , Inseticidas/toxicidade , Espécies Reativas de Oxigênio
8.
J Appl Toxicol ; 41(5): 820-831, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33305432

RESUMO

Oxidative stress is known to induce cytotoxicity and apoptosis in endothelial cells and indorse development of atherosclerosis. The aim of this research was to assess the cytoprotective effects of ethanolic extract of Nigella sativa (NSE) against H2 O2 -induced cell death in human umbilical vein endothelial cells (HUVECs) and also study the probable mechanisms through which NSE exhibited cyto-protection. The cytotoxicity was measured by exposing the HUVECs with NSE (10-200 µg/ml) and H2 O2 (25-1000 µM) for 24 h. Then, the HUVECs were pretreated with noncytotoxic doses (10-50 µg/ml) of NSE for 24 h before administration of 200 µM H2 O2 for 24 h. The MTT, NRU, and morphological assays were performed to assess the cytotoxicity and cyto-protection. Potential antioxidant activity of NSE on oxidative stress marker (glutathione [GSH] and lipid peroxidation [LPO]) was also evaluated. The fluorescence probe, DCF-DA, and Rh123 were applied to measure the reactive oxygen species (ROS) level and mitochondrial membrane potential. Moreover, flow cytometric analysis and comet assay were used to study the cell cycle arrest and DNA damage, respectively. The concentrations (10, 30, and 50 µg/ml) of NSE were found to protect HUVECs against H2 O2 (200 µM)-induced cytotoxicity in HUVECs. Pretreatment of HUVECs with NSE significantly reduced the LPO and ROS levels and restored the GSH and loss of MMP induced by H2 O2 . Furthermore, NSE inhibited H2 O2 -induced cell cycle arrest and cellular DNA damage in HUVECs. Altogether, these results suggest that NSE can prevent H2 O2 -induced cell death, and NSE could be a potential candidate that can prevent HUVECs against toxicants.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Nigella sativa , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
J Biol Inorg Chem ; 25(2): 325-338, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32124101

RESUMO

In recent years, the industrial use of ZnO quantum dots (QDs) and nanoparticles (NPs) has risen and there is a high chance of these nanoparticles affecting human health. In this study, different sizes of ZnO-NPs (6-100 nm) were prepared and characterized. The generation of reactive oxygen species (ROS) and its involvement in apoptosis when HepG2 cells were exposed to QDs (6 nm) and NPs of different sizes (15-20, 50, and 100 nm) was also investigated. At a concentration of 25-200 µg/mL, NPs induced dose-dependent cytotoxicity in HepG2 cells. The engineered NPs increased oxidative stress in a dose- and size-dependent manner, as seen by an increase in ROS production, lipid peroxidation, and glutathione reduction. Furthermore, cell-cycle analysis of HepG2 cells treated with different sizes of NPs showed an increase in the apoptotic peak after a 24-h exposure period. Quantitative real-time PCR data showed that the mRNA levels of apoptotic marker genes such as p53, bax, and caspase-3 were upregulated, whereas bcl-2, an anti-apoptotic gene, was downregulated; therefore, apoptosis was mediated through the p53, bax, caspase-3, and bcl-2 pathways, suggesting a possible mechanism by which QDs and NPs of ZnO mediate their toxicity.Graphic abstract.


Assuntos
Nanopartículas/química , Pontos Quânticos/química , Óxido de Zinco/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Células Tumorais Cultivadas , Óxido de Zinco/síntese química , Óxido de Zinco/química
10.
Mol Biol Rep ; 47(4): 2771-2780, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32180089

RESUMO

A number of liver diseases are known to be caused by oxidative stress. Petroselinum sativum (P. sativum; parsley) is popular for its anti-inflammatory, antimicrobial, anticancer, antioxidant and antidiabetic activities. However, till date the hepatoprotective potential of chloroform extract of P. sativum (PSA) on hydrogen peroxide (H2O2) induced cytotoxicity and oxidative stress in human liver (HepG2) cells have not been studied. Therefore, this study was framed to evaluate whether the levels of hydrogen peroxide (H2O2) induced cytotoxicity and oxidative stress in HepG2 cells could be diminished by pretreating the cells with PSA. MTT assay, NRU assay, morphological alterations, glutathione (GSH) depletion, lipid peroxidation (LPO), ROS generation and loss of mitochondrial membrane potential (MMP) were assessed by using non-cytotoxic concentrations (5, 10 and 25 µg/mL) of PSA against H2O2 (0.25 mM) induced damage in HepG2 cells. The results demonstrated that pretreatment of HepG2 cells with PSA offered protective properties by lowering the LPO and ROS generation and elevating the cell viability, GSH and MMP levels. Together, these results suggest that PSA has the hepatoprotective effect on H2O2 induced cell death in HepG2 cells.


Assuntos
Células Hep G2/efeitos dos fármacos , Peróxido de Hidrogênio/efeitos adversos , Petroselinum/metabolismo , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo
11.
Adv Exp Med Biol ; 1048: 163-174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29453538

RESUMO

Nickel oxide nanoparticles (NiO-NPs) are increasingly used and concerns have been raised on its toxicity. Although a few studies have reported the toxicity of NiO-NPs, a comprehensive understanding of NiO-NPs toxicity in human cells is still lagging. In this study, we integrated transcriptomic approach and genotoxic evidence to depict the mechanism of NiO-NPs toxicity in human hepatocellular carcinoma (HepG2) cells. DNA damage analysis was done using comet assay, which showed 26-fold greater tail moment in HepG2 cells at the highest concentration of 100 µg/ml. Flow cytometric analysis showed concentration dependent enhancement in intracellular reactive oxygen species (ROS). Real-time PCR analysis of apoptotic (p53, bax, bcl2) and oxidative stress (SOD1) genes showed transcriptional upregulation. Transcriptome analysis using qPCR array showed over expression of mRNA transcripts related to six different cellular pathways. Our data unequivocally suggests that NiO-NPs induces oxidative stress, DNA damage, apoptosis and transcriptome alterations in HepG2 cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Nanopartículas/toxicidade , Níquel/toxicidade , Transcriptoma , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
12.
J Appl Toxicol ; 36(10): 1284-93, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26918645

RESUMO

Copper ferrite nanoparticles (NPs) have the potential to be applied in biomedical fields such as cell labeling and hyperthermia. However, there is a lack of information concerning the toxicity of copper ferrite NPs. We explored the cytotoxic potential of copper ferrite NPs in human lung (A549) and liver (HepG2) cells. Copper ferrite NPs were crystalline and almost spherically shaped with an average diameter of 35 nm. Copper ferrite NPs induced dose-dependent cytotoxicity in both types of cells, evident by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide and neutral red uptake assays. However, we observed a quite different susceptibility in the two kinds of cells regarding toxicity of copper ferrite NPs. Particularly, A549 cells showed higher susceptibility against copper ferrite NP exposure than those of HepG2 cells. Loss of mitochondrial membrane potential due to copper ferrite NP exposure was observed. The mRNA level as well as activity of caspase-3 enzyme was higher in cells exposed to copper ferrite NPs. Cellular redox status was disturbed as indicated by induction of reactive oxygen species (oxidant) generation and depletion of the glutathione (antioxidant) level. Moreover, cytotoxicity induced by copper ferrite NPs was efficiently prevented by N-acetylcysteine treatment, which suggests that reactive oxygen species generation might be one of the possible mechanisms of cytotoxicity caused by copper ferrite NPs. To the best of our knowledge, this is the first report showing the cytotoxic potential of copper ferrite NPs in human cells. This study warrants further investigation to explore the mechanisms of differential toxicity of copper ferrite NPs in different types of cells. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cobre/toxicidade , Compostos Ferrosos/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Acetilcisteína/farmacologia , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Relação Dose-Resposta a Droga , Compostos Ferrosos/química , Citometria de Fluxo , Sequestradores de Radicais Livres/farmacologia , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
13.
BMC Complement Altern Med ; 16: 276, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27495289

RESUMO

BACKGROUND: Diabetes mellitus is a metabolic disorder of epidemic proportion, projected to become the major cause of morbidity and mortality in the world in future. Despite extensive research in understanding this disease at molecular level, and the discovery of new drugs, diabetes and its complications remain largely untreated. Many of the late diabetic complications are associated with the glycation of proteins in the body. Natural flora has long been a rich source for therapeutic agents, especially against diabetes. The present study deals with the anti-glycation properties of some medicinally important plants of Arabian region. METHODS: Twenty-six medicinal plants, commonly found in different regions of Arabian Peninsula, were evaluated for their protein anti-glycation activity by using BSA-MG glycation assay in-vitro. The extracts were incubated with BSA and MG at 37 °C for 9 days, each sample was then examined for the presence of fluorescence (λex 330 nm, and λem 420 nm), which represent the extent of protein glycation. Antioxidant activity was evaluated by using 1,1-diphenyl- 2-picrylhydrazyl (DPPH), iron chelation, and superoxide radical scavenging asaays. RESULTS: The data revealed that out of 26 medicinal plants, five plants viz. Sida cordifolia, Plumbago zeylanica, Tribulus terrestris, Glycyrrhiza glabra, and Rosa indica were active against the in-vitro protein glycation with IC50 values between 0.408- 1.690 mg/mL. Among the active plants, Glycyrrhiza glabra L. was found to be the most potent (IC50 = 0.408 ± 0.027 mg/mL), followed by Rosa indica (IC50 = 0.596 ± 0.0179 mg/mL), and Sida cordifolia L. (IC50 = 0.63 ± 0.009 mg/mL). The antioxidant potential of these plant extracts were also determined by using DPPH (2,2-diphenyl-1-picrylhydrazyl), iron chelation, and superoxide anion radical scavenging assays. Among five plants, Sida cordifolia exhibited a potent anti-oxidant activity in both DPPH and superoxide anion radical scavenging assays (IC50 = 0.005 ± 0.0004, and 0.078 ± 0.002 mg/mL, respectively), followed by Rosa indica (IC50 = 0.023 ± 0.0005 and 0.141 ± 0.003 mg/mL, respectively). CONCLUSIONS: Protein glycation in hyperglycemic conditions involve oxidative changes. Therefore dual inhibition of protein glycation and oxidation are desirable properties in any test substance investigated for therapeutic purposes.


Assuntos
Glicosilação/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Bovinos , Oriente Médio , Soroalbumina Bovina
14.
BMC Complement Altern Med ; 16: 126, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161012

RESUMO

BACKGROUND: Cancer is a major health problem and exploiting natural products have been one of the most successful methods to combat this disease. Verbesina encelioides is a notorious weed with various pharmacological properties. The aim of the present investigation was to screen the anticancer potential of V. encelioides extract against human lung cancer (A-549), breast cancer (MCF-7), and liver cancer (HepG2) cell lines. METHODS: A-549, MCF-7, and HepG2 cells were exposed to various concentrations of (10-1000 µg/ml) of V. encelioides for 24 h. Further, cytotoxic concentrations (250, 500, and 1000 µg/ml) of V. encelioides induced oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage in HepG2 cells were studied. RESULTS: The exposure of cells to 10-1000 µg/ml of extract for 24 h, revealed the concentrations 250-1000 µg/ml was cytotoxic against MCF-7 and HepG2 cells, but not against A-549 cells. Moreover, the extract showed higher decrease in the cell viability against HepG2 cells than MCF-7 cells. Therefore, HepG2 cells were selected for further studies viz. oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage. The results revealed differential anticancer activity of V. encelioides against A-549, MCF-7 and HepG2 cells. A significant induction of oxidative stress, ROS generation, and MMP levels was observed in HepG2 cells. The cell cycle analysis and comet assay showed that V. encelioides significantly induced G2/M arrests and DNA damage. CONCLUSION: These results indicate that V. encelioides possess substantial cytotoxic potential and may warrant further investigation to develop potential anticancer agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Extratos Vegetais/farmacologia , Verbesina/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa/metabolismo , Células Hep G2 , Humanos , Peroxidação de Lipídeos , Neoplasias Hepáticas , Potencial da Membrana Mitocondrial , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
15.
Pharm Biol ; 54(2): 314-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25885937

RESUMO

CONTEXT: Garden cress [Lepidium sativum (Brassicaceae)] has been widely used to treat a number of ailments in traditional medicine. The pharmacological and preventive potential of Lepidium sativum, such as anti-inflammatory, antipyretic, antihypertensive, anti-ashthamatic, anticancer, and anti-oxidant, are well known. OBJECTIVE: The present investigation was designed to study the protective effects of chloroform extract of Lepidium sativum seed (LSE) against oxidative stress and cytotoxicity induced by hydrogen peroxide (H2O2) in human liver cells (HepG2). MATERIALS AND METHODS: Cytotoxicity of LSE and H2O2 was identified by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), neutral red uptake (NRU) assays, and morphological changes in HepG2. The cells were pre-exposed to biologically safe concentrations (5-25 µg/ml) of LSE for 24 h, and then cytotoxic (0.25 mM) concentration of H2O2 was added. After 24 h of the exposures, cell viability by MTT, NRU assays, and morphological changes in HepG2 were evaluated. Further, protective effects of LSE on reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), lipid peroxidation (LPO), and reduced glutathione (GSH) levels induced by H2O2 were studied. RESULTS: Pre-exposure of LSE significantly attenuated the loss of cell viability up to 48% at 25 µg/ml concentration against H2O2 (LD50 value = 2.5 mM). Results also showed that LSE at 25 µg/ml concentration significantly inhibited the induction of ROS generation (45%) and LPO (56%), and increases the MMP (55%) and GSH levels (46%). DISCUSSION AND CONCLUSION: The study suggests the cytoprotective effects of LSE against H2O2-induced toxicity in HepG2. The results also demonstrate the anti-oxidative nature of LSE.


Assuntos
Citoproteção/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Lepidium sativum/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/química , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo
16.
J Environ Sci (China) ; 47: 49-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27593272

RESUMO

We have studied the genotoxic and apoptotic potential of ferric oxide nanoparticles (Fe2O3-NPs) in Raphanus sativus (radish). Fe2O3-NPs retarded the root length and seed germination in radish. Ultrathin sections of treated roots showed subcellular localization of Fe2O3-NPs, along with the appearance of damaged mitochondria and excessive vacuolization. Flow cytometric analysis of Fe2O3-NPs (1.0mg/mL) treated groups exhibited 219.5%, 161%, 120.4% and 161.4% increase in intracellular reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), nitric oxide (NO) and Ca(2+) influx in radish protoplasts. A concentration dependent increase in the antioxidative enzymes glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (LPO) has been recorded. Comet assay showed a concentration dependent increase in deoxyribonucleic acid (DNA) strand breaks in Fe2O3-NPs treated groups. Cell cycle analysis revealed 88.4% of cells in sub-G1 apoptotic phase, suggesting cell death in Fe2O3-NPs (2.0mg/mL) treated group. Taking together, the genotoxicity induced by Fe2O3-NPs highlights the importance of environmental risk associated with improper disposal of nanoparticles (NPs) and radish can serve as a good indicator for measuring the phytotoxicity of NPs grown in NP-polluted environment.


Assuntos
Poluentes Ambientais/toxicidade , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Mutagênicos/toxicidade , Catalase/metabolismo , Morte Celular , Dano ao DNA , Monitoramento Ambiental/métodos , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Mutagenicidade , Estresse Oxidativo , Raphanus , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
17.
Arch Toxicol ; 89(2): 243-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24825450

RESUMO

Inhibition mechanism(s) of protein kinase B/Akt1 and its consequences on related cell signaling were investigated in human neuroblastoma SH-SY5Y cells exposed to 4-hydroxy-trans-2-nonenal (4-HNE), one of the most reactive aldehyde by-products of lipid peroxidation. In silico data indicate that 4-HNE interacts with kinase domain of Akt1 with the total docking score of 6.0577 and also forms H-bond to Glu234 residue similar to highly potent Akt1 inhibitor imidazopiperidine analog 8b, in which the protonated imidazole nitrogen involves in two hydrogen bonds between Glu234 and Asp292. The strong hydrogen bonding with Glu234 and hydrophobic interactions with several residues, namely Leu156, Gly157, Val164, Ala177, Tyr229, Ala230, Met281 and Thr291, at the vicinity which is normally occupied by the ribose of ATP, appear to be the main causes of Akt1 inhibition and lead to the significant conformational change on this region of protein. Results of mutational docking prove that Glu234 plays a major role in 4-HNE-mediated Akt1 inhibition. In silico data on Akt inhibition were further validated by observing the down-regulated levels of phosphorylated (Thr308/Ser493) Akt1 as well as the altered levels of the downstream targets of pAkt, namely downregulated levels of pGSK3ß (Ser9), ß-catenin, Bcl2 and upregulated levels of pro-apoptotic markers, namely Bad, Bax, P(53) and caspase-9/3. The cellular fate of such pAkt inhibition was evidenced by increased reactive oxygen species, degraded nuclei, transferase dUTP nick end labeling positive cells and upregulated levels of pJNK1/2. We identified that 4-HNE-mediated Akt1 inhibition was due to the competitive inhibition of ATP by 4-HNE at the kinase domain of ATP binding sites.


Assuntos
Trifosfato de Adenosina/metabolismo , Aldeídos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
J Appl Toxicol ; 35(6): 640-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25663373

RESUMO

Dolomite is a natural mineral of great industrial and commercial importance. With the advent of nanotechnology, natural minerals including dolomite in the form of nanoparticles (NPs) are being utilized in various applications to improve the quality of products. However, safety or toxicity information of dolomite NPs is largely lacking. This study evaluated the cytotoxicity of dolomite NPs in two widely used in vitro cell culture models: human airway epithelial (HEp2) and human liver (HepG2) cells. Concentration-dependent decreased cell viability and damaged cell membrane integrity revealed the cytotoxicity of dolomite NPs. We further observed that dolomite NPs induce oxidative stress in a concentration-dependent manner, as indicated by depletion of glutathione and induction of reactive oxygen species (ROS) and lipid peroxidation. Quantitative real-time PCR data demonstrated that the mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were up-regulated whereas the anti-apoptotic gene bcl-2 was down-regulated in HEp2 and HepG2 cells exposed to dolomite NPs. Moreover, the activity of apoptotic enzymes (caspase-3 and caspase-9) was also higher in both kinds of cells treated with dolomite NPs. It is also worth mentioning that HEp2 cells seem to be marginally more susceptible to dolomite NPs exposure than HepG2 cells. Cytotoxicity induced by dolomite NPs was efficiently prevented by N-acetyl cysteine treatment, which suggests that oxidative stress is primarily responsible for the cytotoxicity of dolomite NPs in both HEp2 and HepG2 cells. Toxicity mechanisms of dolomite NPs warrant further investigations at the in vivo level.


Assuntos
Carbonato de Cálcio/toxicidade , Células Hep G2/efeitos dos fármacos , Mucosa Laríngea/efeitos dos fármacos , Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Glutationa/análise , Células Hep G2/química , Humanos , Mucosa Laríngea/química , Mucosa Laríngea/citologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Reação em Cadeia da Polimerase em Tempo Real , Proteína Supressora de Tumor p53/análise
19.
Environ Toxicol ; 30(2): 137-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23776134

RESUMO

Due to advent of nanotechnology, nickel nanoparticles (Ni NPs) are increasingly recognized for their utility in various applications including catalysts, sensors and electronics. However, the environmental and human health effects of Ni NPs have not been fully investigated. In this study, we examined toxic effects of Ni NPs in human liver (HepG2) cells. Ni NPs were prepared and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. We observed that Ni NPs (size, ∼28 nm; concentration range, 25-100 µg/mL) induced cytotoxicity in HepG2 cells and degree of induction was concentration-dependent. Ni NPs were also found to induce oxidative stress in dose-dependent manner evident by induction of reactive oxygen species and depletion of glutathione. Cell cycle analysis of cells treated with Ni NPs exhibited significant increase of apoptotic cell population in subG1 phase. Ni NPs also induced caspase-3 enzyme activity and apoptotic DNA fragmentation. Upregulation of cell cycle checkpoint gene p53 and bax/bcl-2 ratio with a concomitant loss in mitochondrial membrane potential suggested that Ni NPs induced apoptosis in HepG2 cells was mediated through mitochondrial pathway. This study warrants that applications of Ni NPs should be carefully assessed as to their toxicity to human health.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/análise , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corantes , Fragmentação do DNA , Glutationa/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Vermelho Neutro , Sais de Tetrazólio , Tiazóis
20.
Bioprocess Biosyst Eng ; 38(1): 155-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25073692

RESUMO

The term cancer is used for diseases in which abnormal cells proliferate without control and are able to attack with other tissues. Over various types of cancers, liver cancer is the most hurtful disease, which affects the whole body system. The aim of the present study was to investigate the efficiency against cancer cells of HepG2 cells, with quantum dots of ZnO. The cytotoxic effects were analyzed with MTT assays in range of 1-100 µg/ml. The cells were exposed to ZnO-QDs and it exhibit significant reduction, which starts from concentration 5 µg/ml (4 %; p < 0.05). The assay was justified with quantitative RT-PCR and it demonstrates, exposure of ZnO-QDs on HepG2 cells. The level of mRNA expressions was significantly up-regulated (Bax, P53, and Caspase-3), whereas the anti-apoptotic gene (Bcl-2) was down-regulated. The QDs (5 ± 2 nm) were prepared via soft chemical solution process and analyzed using FESEM, TEM and HR-TEM.


Assuntos
Neoplasias Hepáticas/tratamento farmacológico , Pontos Quânticos , Óxido de Zinco/uso terapêutico , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA