Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 27(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38174899

RESUMO

BACKGROUND: Rats emit 50-kHz ultrasonic vocalizations (USVs) in response to nonpharmacological and pharmacological stimuli, with addictive psychostimulants being the most effective drugs that elicit calling behavior in rats. Earlier investigations found that dopamine D1-like and D2-like receptors modulate the emission of 50-kHz USVs stimulated in rats by the acute administration of addictive psychostimulants. Conversely, information is lacking on how dopamine D1-like and D2-like receptors modulate calling behavior in rats that are repeatedly treated with addictive psychostimulants. METHODS: We evaluated the emission of 50-kHz USVs in rats repeatedly treated (×5 on alternate days) with amphetamine (1 mg/kg, i.p.) either alone or together with (1) SCH 23390 (0.1-1 mg/kg, s.c.), a dopamine D1 receptor antagonist; (2) raclopride (0.3-1 mg/kg, s.c.), a selective dopamine D2 receptor antagonist; or (3) a combination of SCH 23390 and raclopride (0.1 + 0.3 mg/kg, s.c.). Calling behavior of rats was recorded following pharmacological treatment, as well as in response to the presentation of amphetamine-paired cues and to amphetamine challenge (both performed 7 days after treatment discontinuation). RESULTS: Amphetamine-treated rats displayed a sensitized 50-kHz USV emission during repeated treatment, as well as marked calling behavior in response to amphetamine-paired cues and to amphetamine challenge. Antagonism of D1 or D2 receptors either significantly suppressed or attenuated the emission of 50-kHz USVs in amphetamine-treated rats, with a maximal effect after synergistic antagonism of both receptors. CONCLUSIONS: These results shed further light on how dopamine transmission modulates the emission of 50-kHz USVs in rats treated with psychoactive drugs.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Ratos , Animais , Anfetamina/farmacologia , Dopamina , Antagonistas de Dopamina/farmacologia , Racloprida , Ultrassom , Vocalização Animal , Estimulantes do Sistema Nervoso Central/farmacologia
2.
Int J Neuropsychopharmacol ; 27(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546531

RESUMO

BACKGROUND: The proliferation of novel psychoactive substances (NPS) in the drug market raises concerns about uncertainty on their pharmacological profile and the health hazard linked to their use. Within the category of synthetic stimulant NPS, the phenethylamine 2-Cl-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) has been linked to severe intoxication requiring hospitalization. Thereby, the characterization of its pharmacological profile is urgently warranted. METHODS: By in vivo brain microdialysis in adolescent and adult male rats we investigated the effects of 2-Cl-4,5-MDMA on dopamine (DA) and serotonin (5-HT) neurotransmission in two brain areas critical for the motivational and rewarding properties of drugs, the nucleus accumbens (NAc) shell and the medial prefrontal cortex (mPFC). Moreover, we evaluated the locomotor and stereotyped activity induced by 2-Cl-4,5-MDMA and the emission of 50-kHz ultrasonic vocalizations (USVs) to characterize its affective properties. RESULTS: 2-Cl-4,5-MDMA increased dialysate DA and 5-HT in a dose-, brain area-, and age-dependent manner. Notably, 2-Cl-4,5-MDMA more markedly increased dialysate DA in the NAc shell and mPFC of adult than adolescent rats, while the opposite was observed on dialysate 5-HT in the NAc shell, with adolescent rats being more responsive. Furthermore, 2-Cl-4,5-MDMA stimulated locomotion and stereotyped activity in both adolescent and adult rats, although to a greater extent in adolescents. Finally, 2-Cl-4,5-MDMA did not stimulate the emission of 50-kHz USVs. CONCLUSIONS: This is the first pharmacological characterization of 2-Cl-4,5-MDMA demonstrating that its neurochemical and behavioral effects may differ between adolescence and adulthood. These preclinical data could help understanding the central effects of 2-Cl-4,5-MDMA by increasing awareness on possible health damage in users.


Assuntos
Dopamina , Núcleo Accumbens , Córtex Pré-Frontal , Serotonina , Animais , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Serotonina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Locomoção/efeitos dos fármacos , Microdiálise , Fatores Etários , Comportamento Animal/efeitos dos fármacos , Comportamento Estereotipado/efeitos dos fármacos , Vocalização Animal/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Ratos Wistar , Alucinógenos/farmacologia
3.
Eur J Neurosci ; 57(12): 2062-2096, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889803

RESUMO

Mice and rats emit ultrasonic vocalizations (USVs), which may express their arousal and emotional states, to communicate with each other. There is continued scientific effort to better understand the functions of USVs as a central element of the rodent behavioral repertoire. However, studying USVs is not only important because of their ethological relevance, but also because they are widely applied as a behavioral readout in various fields of biomedical research. In mice and rats, a large number of experimental models of brain disorders exist and studying the emission of USVs in these models can provide valuable information about the health status of the animals and the effectiveness of possible interventions, both environmental and pharmacological. This review (i) provides an updated overview of the contexts in which ultrasonic calling behaviour of mice and rats has particularly high translational value, and (ii) gives some examples of novel approaches and tools used for the analysis of USVs in mice and rats, combining qualitative and quantitative methods. The relevance of age and sex differences as well as the importance of longitudinal evaluations of calling and non-calling behaviour is also discussed. Finally, the importance of assessing the communicative impact of USVs in the receiver, that is, through playback studies, is highlighted.


Assuntos
Ultrassom , Vocalização Animal , Feminino , Ratos , Animais , Masculino , Neurofarmacologia , Emoções , Roedores
4.
J Neurovirol ; 27(2): 325-333, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710598

RESUMO

The incidence of HIV-associated neurocognitive disorder (HAND) continues despite the introduction of combination antiretroviral drugs (cART). Several studies have reported the neurotoxicity of individual antiretroviral drugs (monotherapy), while the common approach for HIV treatment is through cART. Hence, the current study investigated the effects of long-term exposure to cART on cognitive function, oxidative damage, autophagy, and neuroplasticity in the hippocampus of mice. Female Balb/c mice received a once-a-day oral dose of cART composed of emtricitabine + tenofovir disoproxil fumarate or vehicle for 8 weeks. On week 7 of drug administration, all mice were assessed for spatial learning in the Morris water maze (MWM), and then on week 8, mice were sacrificed, and hippocampal tissue dissected from the brain. For biochemical analyses, we measured the concentration of 4-hydroxynonenal, and the expression of autophagic marker LC3B, synaptophysin, and brain-derived neurotrophic factor (BDNF) in the hippocampus. Our results showed that cART exposure increased escape latency in the MWM test. The cART-treated mice also showed increased 4-hydroxynonenal concentration and expression of LC3B. Furthermore, cART treatment decreased the expression of synaptophysin and BDNF. These findings further support the evidence that cART may be neurotoxic and therefore may play a role in the neuropathogenesis of HAND.


Assuntos
Fármacos Anti-HIV/toxicidade , Transtornos Cognitivos/induzido quimicamente , Combinação Emtricitabina, Rilpivirina e Tenofovir/toxicidade , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Animais , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C
5.
Int J Neuropsychopharmacol ; 21(1): 73-83, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29182715

RESUMO

Background: Rats emit 50-kHz ultrasonic vocalizations (USVs) to communicate positive emotional states, and these USVs are increasingly being investigated in preclinical studies on reward and motivation. Although it is the activation of dopamine receptors that initiates the emission of 50-kHz USVs, non-dopaminergic mechanisms may modulate calling in the 50 kHz frequency band. To further elucidate these mechanisms, the present study investigated whether the pharmacological manipulation of glucocorticoid signaling influenced calling. Methods: Rats were administered corticosterone (1-5 mg/kg, s.c.), the glucocorticoid receptor antagonist mifepristone (40 or 100 mg/kg, s.c.), or the corticosterone synthesis inhibitor metyrapone (50 or 100 mg/kg, i.p.). The effects of these drugs on calling initiation and on calling recorded during nonaggressive social contacts or after the administration of amphetamine (0.25 or 1 mg/kg, i.p.) were then evaluated. Results: Corticosterone failed to initiate the emission of 50-kHz USVs and did not influence pro-social and amphetamine-stimulated calling. Similarly, mifepristone and metyrapone did not initiate calling. However, metyrapone suppressed pro-social calling and calling stimulated by a moderate dose (1 mg/kg, i.p.) of amphetamine. Conversely, mifepristone attenuated calling stimulated by a low (0.25 mg/kg, i.p.), but not moderate (1 mg/kg, i.p.), dose of amphetamine and had no influence on pro-social calling. Conclusions: The present results demonstrate that glucocorticoid signaling modulates calling in the 50 kHz frequency band only in certain conditions and suggest that mechanisms different from the inhibition of corticosterone synthesis may participate in the suppression of calling by metyrapone.


Assuntos
Glucocorticoides/farmacologia , Motivação/efeitos dos fármacos , Recompensa , Transdução de Sinais/efeitos dos fármacos , Ultrassom , Vocalização Animal/efeitos dos fármacos , Anfetamina/farmacologia , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Antagonistas de Hormônios/farmacologia , Masculino , Metirapona/farmacologia , Mifepristona/farmacologia , Ratos , Ratos Sprague-Dawley , Espironolactona/farmacologia
6.
J Neural Transm (Vienna) ; 125(8): 1273-1286, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29396609

RESUMO

Adenosine is an endogenous purine nucleoside that regulates several physiological functions, at the central and peripheral levels. Besides, adenosine has emerged as a major player in the regulation of motor behavior. In fact, adenosine receptors of the A2A subtype are highly enriched in the caudate-putamen, which is richly innervated by dopamine. Moreover, several studies in experimental animals have consistently demonstrated that the pharmacological antagonism of A2A receptors has a facilitatory influence on motor behavior. Taken together, these findings have envisaged A2A receptors as a promising target for symptomatic therapies aimed at ameliorating motor deficits. Accordingly, A2A receptor antagonists have been extensively studied as new agents for the treatment of Parkinson's disease (PD), the epitome of motor disorders. In this review, we provide an overview of the effects that adenosine A2A receptor antagonists elicit in rodent and primate experimental models of PD, with regard to the counteraction of motor deficits as well as to manifestation of dyskinesia and motor fluctuations. Moreover, we briefly present the results of clinical trials of A2A receptor antagonists in PD patients experiencing motor fluctuations, with particular regard to dyskinesia. Finally, we discuss the interaction between A2A receptor antagonists and serotonin receptor agonists, since combined administration of these drugs has recently emerged as a new potential therapeutic strategy in the treatment of dyskinesia.


Assuntos
Discinesia Induzida por Medicamentos/metabolismo , Doença de Parkinson/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/fisiopatologia , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/fisiopatologia
7.
Mov Disord ; 31(4): 501-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26871939

RESUMO

BACKGROUND: The serotonin 5-HT1A/1B receptor agonist eltoprazine suppressed dyskinetic-like behavior in animal models of Parkinson's disease (PD) but simultaneously reduced levodopa (l-dopa)-induced motility. Moreover, adenosine A2A receptor antagonists, such as preladenant, significantly increased l-dopa efficacy in PD without exacerbating dyskinetic-like behavior. OBJECTIVES: We evaluated whether a combination of eltoprazine and preladenant may prevent or suppress l-dopa-induced dyskinesia, without impairing l-dopa's efficacy in relieving motor signs, in 2 PD models: unilateral 6-hydroxydopamine-lesioned rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. METHODS: Rotational behavior and abnormal involuntary movements, or disability and l-dopa-induced dyskinesia were evaluated in 6-hydroxydopamine-lesioned rats and MPTP-treated monkeys, respectively. Moreover, in the rodent striatum, induction of immediate-early gene zif-268, an index of long-term changes, was correlated with dyskinesia. RESULTS: In 6-hydroxydopamine-lesioned rats, combined administration of l-dopa (4 mg/kg) plus eltoprazine (0.6 mg/kg) plus preladenant (0.3 mg/kg) significantly prevented or reduced dyskinetic-like behavior without impairing motor activity. Zif-268 was increased in the striatum of rats treated with l-dopa and l-dopa plus preladenant compared with vehicle. In contrast, rats treated with eltoprazine (with or without preladenant) had lower zif-268 activation after chronic treatment in both the dyskinetic and l-dopa-non-primed groups. Moreover, acute l-dopa plus eltoprazine plus preladenant prevented worsening of motor performance (adjusting step) and sensorimotor integration deficit. Similar results were obtained in MPTP-treated monkeys, where a combination of preladenant with eltoprazine was found to counteract dyskinesia and maintain the full therapeutic effects of a low dose of l-dopa. CONCLUSIONS: Our results suggest a promising nondopaminergic pharmacological strategy for the treatment of dyskinesia in PD. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Piperazinas/farmacologia , Pirimidinas/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Triazóis/farmacologia , Animais , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/efeitos adversos , Modelos Animais de Doenças , Quimioterapia Combinada , Discinesia Induzida por Medicamentos/prevenção & controle , Feminino , Levodopa/administração & dosagem , Levodopa/efeitos adversos , Macaca fascicularis , Masculino , Piperazinas/administração & dosagem , Pirimidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor de Serotonina/administração & dosagem , Triazóis/administração & dosagem
8.
J Neurochem ; 134(4): 740-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25962878

RESUMO

The glutamate metabotropic receptor 5 (mGluR5) and the adenosine A2A receptor (A2A R) represent major non-dopaminergic therapeutic targets in Parkinson's disease (PD) to improve motor symptoms and slow down/revert disease progression. The 6-hydroxydopamine rat model of PD was used to determine/compare the neuroprotective and behavioral impacts of single and combined administration of one mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), and two A2A R antagonists, (E)-phosphoric acid mono-[3-[8-[2-(3-methoxyphenyl)vinyl]-7-methyl-2,6-dioxo-1-prop-2-ynyl-1,2,6,7-tetrahydropurin-3-yl]propyl] (MSX-3) and 8-ethoxy-9-ethyladenine (ANR 94). Chronic treatment with MPEP or MSX-3 alone, but not with ANR 94, reduced the toxin-induced loss of dopaminergic neurons in the substantia nigra pars compacta. Combining MSX-3 and MPEP further improved the neuroprotective effect of either antagonists. At the behavioral level, ANR 94 and MSX-3 given alone significantly potentiated L-DOPA-induced turning behavior. Combination of either A2A R antagonists with MPEP synergistically increased L-DOPA-induced turning. This effect was dose-dependent and required subthreshold drug concentration, which per se had no motor stimulating effect. Our findings suggest that co-treatment with A2A R and mGluR5 antagonists provides better therapeutic benefits than those produced by either drug alone. Our study sheds some light on the efficacy and advantages of combined non-dopaminergic PD treatment using low drug concentration and establishes the basis for in-depth studies to identify optimal doses at which these drugs reach highest efficacy. Combined treatment with low concentrations of known adenosine A2A receptor (A2A R) and metabotropic glutamate receptor (mGluR5) antagonists results in a therapeutic benefit and provides better results than those produced by either drug given alone, both in terms of motor performance and neuroprotection. Future trials should involve careful optimization of drug combinations and concentrations that may avoid the emergence of debilitating side effects and slow-down/revert disease progression.


Assuntos
Levodopa/administração & dosagem , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/tratamento farmacológico , Antagonistas de Receptores Purinérgicos P1/administração & dosagem , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Adenina/administração & dosagem , Adenina/análogos & derivados , Animais , Sistemas de Liberação de Medicamentos/métodos , Sinergismo Farmacológico , Masculino , Neurônios/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/psicologia , Piridinas/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Rotação , Resultado do Tratamento , Xantinas/administração & dosagem
9.
Int J Neuropsychopharmacol ; 18(11): pyv057, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25991653

RESUMO

BACKGROUND: Rats emit 50 kHz ultrasonic vocalizations (USVs) in response to either natural or pharmacological pleasurable stimuli, and these USVs have emerged as a new behavioral measure for investigating the motivational properties of drugs. Earlier studies have indicated that activation of the dopaminergic system is critically involved in 50 kHz USV emissions. However, evidence also exists that non-dopaminergic neurotransmitters participate in this behavioral response. METHODS: To ascertain whether glutamate transmission plays a role in 50 kHz USV emissions stimulated by amphetamine, rats received five amphetamine (1-2mg/kg, i.p.) administrations on alternate days in a test cage, either alone or combined with the glutamate N-methyl-D-aspartate receptor antagonist MK-801 (0.1-0.5mg/kg, i.p.). Seven days after treatment discontinuation, rats were re-exposed to the test cage to assess drug conditioning, and afterwards received a drug challenge. USVs and locomotor activity were evaluated, along with immunofluorescence for Zif-268 in various brain regions and spontaneous alternation in a Y maze. RESULTS: Amphetamine-treated rats displayed higher 50 kHz USV emissions and locomotor activity than vehicle-treated rats, and emitted conditioned vocalizations on test cage re-exposure. Rats co-administered amphetamine and MK-801 displayed lower and dose-dependent 50 kHz USV emissions, but not lower locomotor activity, during repeated treatment and challenge, and scarce conditioned vocalization compared with amphetamine-treated rats. These effects were associated with lower levels of Zif-268 after amphetamine challenge and spontaneous alternation deficits. CONCLUSIONS: These results indicate that glutamate transmission participates in the acute, long-term, and conditioned effects of amphetamine on 50 kHz USVs, possibly by influencing amphetamine-induced long-term neuronal changes and/or amphetamine-associated memories.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Fatores de Tempo , Ultrassom
10.
Addict Biol ; 20(1): 132-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23957273

RESUMO

Adolescent Cannabis exposure has been hypothesized to act as a gateway to opiate abuse. In order to investigate the role of genetic background in cannabinoid-opiate interactions, we studied the effect of Δ(9) -tetrahydrocannabinol (THC) exposure of adolescent Lewis and Fischer 344 rats on the responsiveness of accumbens shell and core dopamine (DA), as monitored by microdialysis, to THC and heroin at adulthood. Heroin reward and reinstatement by heroin priming were studied by conditioned place preference (CPP) and cognitive and emotional functions by object recognition, Y maze and elevated plus maze paradigms. THC stimulated shell DA in Lewis but not in Fischer 344 rats. Adolescent THC exposure potentiated DA stimulant effects of heroin in the shell and core of Lewis and only in the core of Fischer 344 rats. Control Lewis rats developed stronger CPP to heroin and resistance to extinction compared with Fischer 344 strain. In Lewis rats, THC exposure did not affect heroin CPP but potentiated the effect of heroin priming. In Fischer 344 rats, THC exposure increased heroin CPP and made it resistant to extinction. Lewis rats showed seeking reactions during extinction and hedonic reactions in response to heroin priming. Moreover, adolescent THC exposure affected emotional function only in Lewis rats. These observations suggest that long-term effects of Cannabis exposure on heroin addictive liability and emotionality are dependent on individual genetic background.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Dopamina/metabolismo , Dronabinol/farmacologia , Dependência de Heroína/genética , Heroína/farmacologia , Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Masculino , Microdiálise , Núcleo Accumbens/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Recompensa , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
11.
J Neurochem ; 131(3): 284-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24989117

RESUMO

Epidemiological studies have indicated an inverse association between high uricemia and incidence of Parkinson's disease (PD). To investigate the link between endogenous urate and neurotoxic changes involving the dopaminergic nigrostriatal system, this study evaluated the modifications in the striatal urate levels in two models of PD. To this end, a partial dopaminergic degeneration was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice, while a severe dopaminergic degeneration was elicited by unilateral medial forebrain bundle infusion of 6-hydroxydopamine (6-OHDA) in rats. Urate levels were measured by in vivo microdialysis at 7 or 14 days from toxin exposure. The results obtained demonstrated higher urate levels in the dopamine-denervated striatum of 6-OHDA-lesioned rats compared with the intact striatum. Moreover, an inverse correlation between urate and dopamine levels was observed in the same area. In contrast, only a trend to significant increase in striatal urate was observed in MPTP-treated mice. These results demonstrate that a damage to the dopaminergic nigrostriatal system elevates the striatal levels of urate, and suggest that this could be an endogenous compensatory mechanism to attenuate dopaminergic neurodegeneration. This finding may be important in light of the epidemiological and preclinical evidences that indicate a link between urate and development of PD.


Assuntos
Neurônios Dopaminérgicos/patologia , Intoxicação por MPTP/metabolismo , Neostriado/metabolismo , Neostriado/patologia , Doença de Parkinson Secundária/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Ácido Úrico/metabolismo , Animais , Dopamina/metabolismo , Hidroxidopaminas , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Ratos Sprague-Dawley
12.
J Neurochem ; 130(4): 472-89, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24773031

RESUMO

Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine-cAMP-regulated neuronal phosphoprotein, extracellular signal-regulated kinase, mammalian target of rapamycin, mitogen and stress-activated kinase-1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non-pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease-associated motor symptoms, especially the development of dyskinesia. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non-pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.


Assuntos
Discinesias/etiologia , Discinesias/terapia , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Animais , Canabinoides/farmacologia , Transplante de Células , Cromatina/efeitos dos fármacos , Estimulação Encefálica Profunda , Dopaminérgicos/uso terapêutico , Fosfoproteína 32 Regulada por cAMP e Dopamina/fisiologia , Discinesias/fisiopatologia , Histonas/metabolismo , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Atividade Motora/fisiologia , Doença de Parkinson/fisiopatologia , Fosforilação , Desempenho Psicomotor/fisiologia , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estimulação Magnética Transcraniana
13.
Int J Neuropsychopharmacol ; 17(3): 429-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24138707

RESUMO

Several studies suggest that 50-kHz ultrasonic vocalizations (USVs) may indicate a positive affective state in rats, and these vocalizations are increasingly being used to investigate the properties of psychoactive drugs. Previous studies, however, have focused on dopaminergic psychostimulants and morphine, whereas little is known about how other drugs modulate 50-kHz USVs. To further elucidate the neuropharmacology of 50-kHz USVs, the present study characterized the direct and long-lasting effects of different drugs of abuse, by measuring the number of 50-kHz USVs and their 'trill' subtype emitted by adult male rats. Rats received repeated administrations of amphetamine (2 mg/kg, i.p.), 3,4-methylenedioxymethamphetamine (MDMA, 7.5 mg/kg, i.p.), morphine (7.5 mg/kg, s.c.), or nicotine (0.4 mg/kg, s.c.), on either consecutive or alternate days (five administrations in total) in a novel environment. Seven days later, rats were re-exposed to the drug-paired environment, subjected to USVs recording, and then challenged with the same drug. Finally, 7 d after the challenge, rats were repeatedly exposed to the drug-paired environment and vocalizations were measured. Amphetamine was the only drug to stimulate 50-kHz USVs and 'trill' subtype emission during administration and challenge. Conversely, all rats emitted 50-kHz USVs when re-exposed to the test cage, and this effect was most marked in morphine-treated rats, and less evident in nicotine-treated rats. This study demonstrates that the direct and long-lasting effects of drugs on 50-kHz USVs are regulated differently, providing a better understanding of the usefulness of these vocalizations in the study of psychoactive drugs.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Psicotrópicos/farmacologia , Vocalização Animal/efeitos dos fármacos , Anfetamina/farmacologia , Animais , Esquema de Medicação , Masculino , Morfina/farmacologia , Atividade Motora/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Nicotina/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Ultrassom
14.
Neural Regen Res ; 19(9): 1908-1918, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227515

RESUMO

Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.

15.
J Neurochem ; 124(1): 69-78, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23083295

RESUMO

Evidence is accumulating to suggest that 3,4-methylenedioxymethamphetamine (MDMA) has neurotoxic and neuroinflammatory properties. MDMA is composed of two enantiomers with different biological activities. In this study, we evaluated the in vivo effects of S(+)-MDMA, R(-)-MDMA, and S(+)-MDMA in combination with R(-)-MDMA on microglial and astroglial activation compared with racemic MDMA, by assessment of complement type 3 receptor (CD11b) and glial fibrillary acidic protein (GFAP) immunoreactivity in the mouse striatum, nucleus accumbens, motor cortex, and substantia nigra. Motor activity and body temperature were also measured, to elucidate the physiological modifications paired with the observed glial changes. Similar to racemic MDMA (4 × 20 mg/kg), S(+)-MDMA (4 × 10 mg/kg) increased both CD11b and GFAP in the striatum, although to a lower degree, whereas R(-)-MDMA (4 × 10 mg/kg) did not induce any significant glial activation. Combined administration of S(+) plus R(-)-MDMA did not induce any further activation compared with S(+)-MDMA. In all other areas, only racemic MDMA was able to slightly activate the microglia, but not the astroglia, whereas enantiomers had no effect, either alone or in combination. Racemic MDMA and S(+)-MDMA similarly increased motor activity and raised body temperature, whereas R(-)-MDMA affected neither body temperature nor motor activity. Interestingly, the increase in body temperature was correlated with glial activation. The results show that no synergism, but only additivity of effects, is caused by the combined administration of S(+)- and R(-)-MDMA, and underline the importance of investigating the biochemical and behavioral properties of the two MDMA enantiomers to understand their relative contribution to the neuroinflammatory and neurotoxic effects of MDMA.


Assuntos
Astrócitos/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Alucinógenos/toxicidade , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Antígeno CD11b/metabolismo , Interações Medicamentosas , Alucinógenos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metil-3,4-Metilenodioxianfetamina/química , Estereoisomerismo
16.
Cells ; 11(17)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36078036

RESUMO

Parkinson's disease (PD) is a complex pathology causing a plethora of non-motor symptoms besides classical motor impairments, including cognitive disturbances. Recent studies in the PD human brain have reported microgliosis in limbic and neocortical structures, suggesting a role for neuroinflammation in the development of cognitive decline. Yet, the mechanism underlying the cognitive pathology is under investigated, mainly for the lack of a valid preclinical neuropathological model reproducing the disease's motor and non-motor aspects. Here, we show that the bilateral intracerebral infusion of pre-formed human alpha synuclein oligomers (H-αSynOs) within the substantia nigra pars compacta (SNpc) offers a valid model for studying the cognitive symptoms of PD, which adds to the classical motor aspects previously described in the same model. Indeed, H-αSynOs-infused rats displayed memory deficits in the two-trial recognition task in a Y maze and the novel object recognition (NOR) test performed three months after the oligomer infusion. In the anterior cingulate cortex (ACC) of H-αSynOs-infused rats the in vivo electrophysiological activity was altered and the expression of the neuron-specific immediate early gene (IEG) Npas4 (Neuronal PAS domain protein 4) and the AMPA receptor subunit GluR1 were decreased. The histological analysis of the brain of cognitively impaired rats showed a neuroinflammatory response in cognition-related regions such as the ACC and discrete subareas of the hippocampus, in the absence of any evident neuronal loss, supporting a role of neuroinflammation in cognitive decline. We found an increased GFAP reactivity and the acquisition of a proinflammatory phenotype by microglia, as indicated by the increased levels of microglial Tumor Necrosis Factor alpha (TNF-α) as compared to vehicle-infused rats. Moreover, diffused deposits of phospho-alpha synuclein (p-αSyn) and Lewy neurite-like aggregates were found in the SNpc and striatum, suggesting the spreading of toxic protein within anatomically interconnected areas. Altogether, we present a neuropathological rat model of PD that is relevant for the study of cognitive dysfunction featuring the disease. The intranigral infusion of toxic oligomeric species of alpha-synuclein (α-Syn) induced spreading and neuroinflammation in distant cognition-relevant regions, which may drive the altered neuronal activity underlying cognitive deficits.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Animais , Disfunção Cognitiva/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologia , Humanos , Doenças Neuroinflamatórias , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
17.
Handb Exp Pharmacol ; (200): 483-507, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20859810

RESUMO

This chapter examines the psychostimulant actions of methylxanthines, with a focus on the consequences of their excessive use. Consumption of methylxanthines is pervasive and their use is often associated with that of substances known to produce dependence and to have abuse potential. Therefore, the consequences of this combined use are taken into consideration in order to evaluate whether, and to what extent, methylxanthines could influence dependence on or abuse of other centrally active substances, leading to either amplification or attenuation of their effects. Since the methylxanthine that mostly influences mental processes and readily induces psychostimulation is caffeine, this review mainly focuses on caffeine as a prototype of methylxanthine-produced dependence, examining, at the same time, the risks related to caffeine use.


Assuntos
Cafeína/farmacologia , Psicotrópicos/farmacologia , Transtornos Relacionados ao Uso de Substâncias , Animais , Interações Medicamentosas , Tolerância a Medicamentos , Humanos
18.
Brain Sci ; 11(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34439672

RESUMO

Rats emit ultrasonic vocalizations (USVs) in situations with emotional valence, and USVs have also been proposed as a marker for memories conditioned to those situations. This study investigated whether USV emissions can predict and/or be associated with the behavior of rats in tests that evaluate unconditioned memory. To this end, rats were subjected to "tickling", a procedure of heterospecific play that has emotional valence and elicits the emission of USVs, and afterwards evaluated in the novel object recognition test (NOR) and in the single trial continuous spontaneous alternation behavior (SAB) test in a Y maze. The number of 22-kHz USVs (aversive) and 50-kHz USVs (appetitive) emitted in response to tickling and during NOR and SAB tests were scored, and the correlations among them and with rats' behavior evaluated. Rats emitted 50-kHz USVs, but not 22-kHz USVs, during the NOR and SAB tests, and such calling behavior was not linked with the behavioral readouts indicative of memory function in either test. However, rats that prevalently emitted 22-kHz USVs in response to tickling displayed an impaired NOR performance. These findings suggest that measuring the emission of USVs could be of interest in studies of unconditioned memory, at least with regard to 22-kHz USVs.

19.
Neurosci Lett ; 749: 135733, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592304

RESUMO

The emission of ultrasonic vocalizations (USVs) is thought to communicate the behavioral and emotional states elicited in rodents by social and non-social stimuli. On this basis, studies of psychopharmacology in rats are increasingly utilizing USVs as a behavioral marker to evaluate the effects of drugs on the emotional state. Conversely, very limited information is available as to whether psychoactive drugs influence USV emissions in mice. To provide new insights in this respect, we evaluated the emission of USVs in C57BL/6J mice subjected to repeated treatment with the dopaminergic psychostimulant of abuse amphetamine. Mice were first allowed to perform social contacts in dyads, and 2 days later they received amphetamine (1-4 mg/kg, i.p.) in a test cage (× 5 administrations) on alternate days. Seven days after treatment discontinuation, mice were re-exposed to the test cage to evaluate whether the presentation of drug-paired environmental cues elicited calling behavior, and thereafter received an amphetamine challenge. An additional group of animals received the dopamine receptor agonist apomorphine (1-4 mg/kg, i.p.), to further clarify the role of dopamine transmission in calling behavior of mice. C57BL/6J mice emitted USVs during social contacts, but did not significantly vocalize after amphetamine administration, in response to amphetamine-paired environmental cues, and after apomorphine administration. These results indicate that C57BL/6J mice may respond differently to social and pharmacological stimuli in terms of USV emissions, and may lay the foundation for future studies aimed at clarifying whether USVs may be a useful behavioral marker in studies of psychopharmacology in mice.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Ultrassom , Vocalização Animal/efeitos dos fármacos , Animais , Apomorfina/farmacologia , Sinais (Psicologia) , Agonistas de Dopamina/farmacologia , Camundongos Endogâmicos C57BL , Psicotrópicos/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-33242502

RESUMO

Dopamine replacement therapy used in Parkinson's disease (PD) may induce alterations in the emotional state that can underlie the manifestation of iatrogenic psychiatric-like disturbances. The preclinical investigation of these disturbances is limited, also because few reliable paradigms are available to study the affective properties of dopaminomimetic drugs in parkinsonian animals. To provide a relevant experimental tool in this respect, we evaluated whether dopaminomimetic drugs modified the emission of 50-kHz ultrasonic vocalizations (USVs), a behavioral marker of positive affect, in rats bearing a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle. Apomorphine (2 or 4 mg/kg, i.p.), L-3,4-dihydroxyphenilalanine (L-DOPA, 6 or 12 mg/kg, i.p.), or pramipexole (2 or 4 mg/kg, i.p.) were administered in a test cage (× 5 administrations) on alternate days. Seven days after treatment discontinuation, rats were re-exposed to the test cage to measure conditioned calling behavior and thereafter received a drug challenge. Hemiparkinsonian rats treated with either apomorphine or L-DOPA, but not pramipexole, markedly vocalized during repeated treatment and after challenge, and showed conditioned calling behavior. Moreover, apomorphine, L-DOPA and pramipexole elicited different patterns of 50-kHz USV emissions and rotational behavior, indicating that calling behavior in hemiparkinsonian rats treated with dopaminomimetic drugs is not a byproduct of motor activation. Taken together, these results suggest that measuring 50-kHz USV emissions may be a relevant experimental tool for studying how dopaminomimetic drugs modify the affective state in parkinsonian rats, with possible implications for the preclinical investigation of iatrogenic psychiatric-like disturbances in PD.


Assuntos
Dopaminérgicos/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Vocalização Animal/efeitos dos fármacos , Afeto/efeitos dos fármacos , Animais , Apomorfina/uso terapêutico , Desipramina/uso terapêutico , Modelos Animais de Doenças , Levodopa/uso terapêutico , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Pramipexol/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA