Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 4): 114750, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370821

RESUMO

Heavy metals represent a considerable threat, and the current study deals with synthesizing a novel MOF nanocomposite by intercalating graphene oxide (GO) and linker UiO-66-NDC. It was shown that UiO-66-NDC/GO had enhanced the removal efficiency of Pb (II) ions at pH 6. The adsorption kinetics data followed the PSO (Type 2) representing chemisorption. Adsorption data were also fitted with three different isotherms, namely Temkin, Freundlich, & Langmuir, and the Temkin model exhibited the best correlation (R2 0.99), representing the chemisorption nature of the adsorption process. The maximum adsorption capacity (qmax) of Pb (II) ions using Langmuir was found to be 254.45 mg/g (298 K). The Pb (II) adsorption process was confirmed to be exothermic and spontaneous as the thermodynamic parameters H° and G° were determined to have negative values. MOF nanocomposite also represents significant reusability for up to four regeneration cycles using 0.01 M HCl; for the next four, it works quite efficiently after regeneration. Meanwhile, the simulation findings confirm the superior dynamic stability (∼08 times) of the MOF nanocomposite as compared to the GO system. The removal of Pb (II) from simulated wastewater samples using a super nano-adsorbent using a MOF nanocomposite is described here for the first time.


Assuntos
Chumbo , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Água , Íons , Cinética , Concentração de Íons de Hidrogênio
2.
Artigo em Inglês | MEDLINE | ID: mdl-37150890

RESUMO

The mismanagement of consumer-discarded plastic waste (CDPW) has raised global environmental concerns about climate change. The COVID-19 outbreak has generated ∼1.6 million tons of plastic waste per day in the form of personal protective equipment (masks, gloves, face shields, and sanitizer bottles). These plastic wastes are either combustible or openly dumped in aquatic and terrestrial environments. Open dumping upsurges emerging contaminants like micro-nano plastics (MNPs) that directly enter the ecosystem and cause severe impacts on flora and fauna. Therefore, it has become an utmost priority to determine sustainable technologies that can degrade or treat MNPs from the environment. The present review assesses the sources and impacts of MNPs, various challenges, and issues associated with their remediation techniques. Accordingly, a novel sustainable circular model is recommended to increase the degradation efficiency of MNPs using biochemical and biological methods. It is also concluded that the proposed model does not only overcome environmental issues but also provides a sustainable secondary resource to meet the sustainable development goals (SDGs).


Assuntos
COVID-19 , Plásticos , Humanos , Microplásticos , Ecossistema , COVID-19/epidemiologia , COVID-19/prevenção & controle
3.
Environ Res ; 215(Pt 1): 114224, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058276

RESUMO

Microplastics are a silent threat that represent a high degree of danger to the environment in its different ecosystems and of course will also have an important impact on the health of living organisms. It is evident the need to have effective treatments for their treatment, however this is not a simple task, this as a result of the behavior of microplastics in wastewater treatment plants due to their different types and nature, their long molecular chain, reactivity against water, size, shape and the functional groups they carry. Wastewater treatment plants are at the circumference of the release of these wastes into the environment. They often act as a source of many contaminations, which makes this problem more complex. Challenges such as detection in the current scenario using the latest analytical techniques impede the correct understanding of the problem. Due to microplastics, treatment plants have operational and process stability problems. This review paper will present the in-depth situation of occurrence of microplastics, their detection, conventional and advanced treatment methods as well as implementation of legislations worldwide in a comprehensive manner. It has been observed that no innovative or new technologies have emerged to treat microplastics. Therefore, in this article, technologies targeting wastewater treatment plants are critically analyzed. This will help to understand their fate, but also to develop state-of-the-art technologies or combinations of them for the selective treatment of microplastics. The pros and cons of the treatment methods adopted and the knowledge gaps in legislation regarding their implementation are also comprehensively analyzed. This critical work will offer the development of new strategies to restrict microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Microplásticos/toxicidade , Plásticos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
J Dairy Sci ; 103(3): 2701-2706, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980223

RESUMO

The current study investigates the therapeutic efficacy of an α-linolenic acid (ALA, 18:3n-3)-based intramammary nanosuspension (ALA-NS) for treatment of subclinical mastitis. After confirmation of mastitis with the help of field-based testing, a total of 9 mixed-breed cows (23 udder quarter samples) were divided into 3 groups and treated with ALA-NS and cefoperazone intramammary suspension for 10 d. Subclinical mastitis on d 1 was confirmed through field-based tests such as pH, California Mastitis Test (CMT), Whiteside test (WST), and bromothymol blue test (BBT) scores. Treatment with ALA-NS (F1 and F2) exhibited significant effects on field-based parameters, along with curtailment of total microbial count [28 ± 3.16 (mean ± standard deviation) and 25 ± 4.24 cfu/50 µL] and somatic cell count (SCC; 3.9 and 2.8 log SCC cells/mL), respectively for ALA-NS F1 and F2, after 10-d treatment. The efficacy of ALA-NS was further affirmed using more stringent markers for inflammation (nuclear factor kappa-light-chain-enhancer of activated B cells, NFκB-p65), milk quality (sterol response element-binding protein-1c, SREBP-1c), and bacterial resistance (ubiquitin carboxyl-terminal hydrolase-1, UCHL-1) in milk samples. Treatment with ALA-NS (at 2 concentrations of ALA, F1 and F2) significantly decreased expression of NFκB-p65, SREBP-1c, and UCHL-1 after d 10 of treatment. Apparently, anti-inflammatory, antibacterial, peripheral analgesic properties of ALA could account for the therapeutic efficacy of the proposed regimen.


Assuntos
Analgésicos/administração & dosagem , Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Inflamação/tratamento farmacológico , Mastite Bovina/tratamento farmacológico , Leite/normas , Ácido alfa-Linolênico/administração & dosagem , Animais , Bovinos , Cefoperazona/administração & dosagem , Contagem de Células/veterinária , Feminino , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Nanotecnologia
5.
J Environ Sci (China) ; 89: 47-64, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31892401

RESUMO

In an era of electronics, recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide. Biological mining is an attractive, economical and non-hazardous to recover gold from the low-grade auriferous ore containing waste or soil. This review represents the recent major biological gold retrieval methods used to bio-mine gold. The biomining methods discussed in this review include, bioleaching, bio-oxidation, bio-precipitation, bio-flotation, bio-flocculation, bio-sorption, bio-reduction, bio-electrometallurgical technologies and bioaccumulation. The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic, which help it withstand high concentrations of gold without causing any fatal consequences. Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed. With the help of concurrent advancements in high-throughput technologies, the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources, while keeping the gold mining clean and more sustainable.


Assuntos
Resíduo Eletrônico , Resíduos Sólidos , Ouro , Metalurgia , Mineração
6.
Environ Monit Assess ; 188(4): 206, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26940329

RESUMO

Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Monitoramento Ambiental , Política Ambiental , Poluição Ambiental/estatística & dados numéricos , Humanos , Plantas
7.
Chemosphere ; 357: 142053, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636917

RESUMO

Emerging organic contaminants present in the environment can be biodegraded in anodic biofilms of microbial fuel cells (MFCs). However, there is a notable gap existing in deducing the degradation mechanism, intermediate products, and the microbial communities involved in degradation of broad-spectrum antibiotic such as triclosan (TCS). Herein, the possible degradation of TCS is explored using TCS acclimatized biofilms in MFCs. 95% of 5 mgL-1 TCS are been biodegraded within 84 h with a chemical oxygen demand (COD) reduction of 62% in an acclimatized-MFC (A-MFC). The degradation of TCS resulted in 8 intermediate products including 2,4 -dichlorophenol which gets further mineralized within the system. Concurrently, the 16S rRNA V3-V4 sequencing revealed that there is a large shift in microbial communities after TCS acclimatization and MFC operation. Moreover, 30 dominant bacterial species (relative intensity >1%) are identified in the biofilm in which Sulfuricurvum kujiense, Halomonas phosphatis, Proteiniphilum acetatigens, and Azoarcus indigens significantly contribute to dihydroxylation, ring cleavage and dechlorination of TCS. Additionally, the MFC was able to produce 818 ± 20 mV voltage output with a maximum power density of 766.44 mWm-2. The antibacterial activity tests revealed that the biotoxicity of TCS drastically reduced in the MFC effluent, signifying the non-toxic nature of the degraded products. Hence, this work provides a proof-of-concept strategy for sustainable mitigation of TCS in wastewaters with enhanced bioelectricity generation.


Assuntos
Bactérias , Biodegradação Ambiental , Fontes de Energia Bioelétrica , Biofilmes , Triclosan , Triclosan/metabolismo , Bactérias/metabolismo , Poluentes Químicos da Água/metabolismo , RNA Ribossômico 16S , Clorofenóis/metabolismo , Catálise
8.
Pharmacol Ther ; 250: 108519, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625521

RESUMO

Lactate acidosis is often observed in the tumor microenvironment (TME) of solid tumors. This is because glucose breaks down quickly via glycolysis, causing lactate acidity. Lactate is harmful to healthy cells, but is a major oncometabolite for solid cancer cells that do not receive sufficient oxygen. As an oncometabolite, it helps tumor cells perform different functions, which helps solid hypoxic tumor cells spread to other parts of the body. Studies have shown that the acidic TME contains VEGF, Matrix metalloproteinases (MMPs), cathepsins, and transforming growth factor-ß (TGF-ß), all of which help spread in direct and indirect ways. Although each cytokine is important in its own manner in the TME, TGF-ß has received much attention for its role in metastatic transformation. Several studies have shown that lactate acidosis can cause TGF-ß expression in solid hypoxic cancers. TGF-ß has also been reported to increase the production of fatty acids, making cells more resistant to treatment. TGF-ß has also been shown to control the expression of VEGF and MMPs, which helps solid hypoxic tumors become more aggressive by helping them spread and create new blood vessels through an unknown process. The role of TGF-ß under physiological conditions has been described previously. In this study, we examined the role of TGF-ß, which is induced by lactate acidosis, in the spread of solid hypoxic cancer cells. We also found that TGF-ß and lactate work together to boost fatty acid production, which helps angiogenesis and invasiveness.


Assuntos
Acidose , Neoplasias , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ácido Láctico/metabolismo , Microambiente Tumoral , Hipóxia
9.
Waste Manag ; 156: 1-11, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36424243

RESUMO

The integration of hydrogen in the primary energy mix requires a major technological shift in virtually every energy-related application. This study has attempted to investigate the techno-economic solar photovoltaic (PV) integrated water electrolysis and waste incineration system. Three different strategies, i.e., (i) PV + Battery(Hybrid mode with required batteries); (ii) auto-ignition (Direct coupling); and (iii) PV + Secondary-Electrolyzer(Direct coupling assisted with secondary electrolyzer), have been envisioned. The 'PV + Battery' consume 42.42 % and 15.07 % less energy than the auto-ignition and 'PV + Secondary-Electrolyzer' methods. However, the capital cost of 'PV + Battery' has been calculated to be 15.4 % and 11.8 % more than auto-ignition and 'PV + Secondary-Electrolyzer, respectively.The energy consumption relative to waste input, the 'PV + Battery' method used 80 % less energy, while auto-ignition and 'PV + Secondary-Electrolyzer' showed 70.5 % and 77.5 % less energy, respectively. Furthermore, these approaches showed a vast difference in cost-benefit for the longer run. 'PV + Battery' was forecasted to be 73.3 % and 23.3 % more expensive than auto-ignition and 'PV + Secondary-Electrolyzer' methods, respectively, for 30 years. Overall, this study can benefit from using either of these methods depending on the application, usage scale, and climatic conditions.


Assuntos
Hidrogênio , Incineração , Fontes de Energia Elétrica
10.
Front Oncol ; 13: 1034205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761981

RESUMO

It is well known that solid hypoxic tumour cells oxidise glucose through glycolysis, and the end product of this pathway is fermented into lactate which accumulates in the tumour microenvironment (TME). Initially, it was proclaimed that cancer cells cannot use lactate; therefore, they dump it into the TME and subsequently augment the acidity of the tumour milieu. Furthermore, the TME acts as a lactate sink with stope variable amount of lactate in different pathophysiological condition. Regardless of the amount of lactate pumped out within TME, it disappears immediately which still remains an unresolved puzzle. Recent findings have paved pathway in exploring the main role of lactate acidosis in TME. Cancer cells utilise lactate in the de novo fatty acid synthesis pathway to initiate angiogenesis and invasiveness, and lactate also plays a crucial role in the suppression of immunity. Furthermore, lactate re-programme the lipid biosynthetic pathway to develop a metabolic symbiosis in normoxic, moderately hypoxic and severely hypoxic cancer cells. For instance: severely hypoxic cancer cells enable to synthesizing poly unsaturated fatty acids (PUFA) in oxygen scarcity secretes excess of lactate in TME. Lactate from TME is taken up by the normoxic cancer cells whereas it is converted back to PUFAs after a sequence of reactions and then liberated in the TME to be utilized in the severely hypoxic cancer cells. Although much is known about the role of lactate in these biological processes, the exact molecular pathways that are involved remain unclear. This review attempts to understand the molecular pathways exploited by lactate to initiate angiogenesis, invasiveness, suppression of immunity and cause re-programming of lipid synthesis. This review will help the researchers to develop proper understanding of lactate associated bimodal regulations of TME.

11.
Chemosphere ; 311(Pt 2): 137104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36347345

RESUMO

In the present study, a simple and sensitive method for detecting bisphenol A (BPA) in various environments, including groundwater, was described using a widespread electrochemical method. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects oon the nervous, reproductive, and immune systems. A novel metal-organic framework (UiO-66-NDC/GO) was synthesized, and its existence was confirmed by several characterization techniques like FTIR, UV-visible, XRD, SEM-EDX, Raman spectroscopy, and TGA. Due to the excellent electrocatalytic nature, UiO-66-NDC/GO was chosen as the sensor material and integrated on the surface of the bare carbon paste electrode (BCPE). The UiO-66-NDC/GO modified carbon paste electrode (MCPE) was engaged for the detection of BPA using techniques like cyclic Voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The applied sensor exhibited an astonishing outcome for BPA detection with high sensitivity and selectivity. The lower detection limit (LLOD) of 0.025 µM was achieved at the modified sensor with a linear concentration range of 10-70 µM. Moreover, the practical applicability of the sensor was tested on tap water, drinking water, and fresh liquid milk, giving an excellent recovery of BPA in the range of 94.8-99.3 (v.%). The proposed method could be employed for electrochemical device or a solid state device fabrication for the onsite monitoring of BPA.

12.
Chemosphere ; 328: 138533, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004819

RESUMO

Herein, the synthesis, characterization, and adsorption performance of a novel green sulfur-doped carbon nanosphere (S-CNs) is studied to eliminate Cd (II) ions from water effectively. S-CNs were characterized using different techniques including Raman spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), , Brunauer-Emmett-Teller (BET) specific surface area analysis and Fourier transform infrared spectrophotometry (FT-IR), were performed. The efficient adsorption of the Cd (II) ions onto S-CNs strongly depended on pH, initial concentration of Cd (II) ions, S-CNs dosage, and temperature. Four isotherm models (Langmuir, Freundlich, Temkin & Redlich Peterson) were tested for modeling. Out of four, Langmuir showed more applicability than the other three models, with a Qmax value of 242.72 mg/g. Kinetic modeling studies suggest a superior fit of the obtained experimental data with the Elovich equation (linear) and pseudo-second-order (non-linear) rather than other linear and non-linear models. Data obtained from thermodynamic modeling indicates that using S-CNs for Cd (II) ions adsorption is a spontaneous and endothermic . The current work recommends using better and recyclable S-CNs to uptake excess Cd (II) ions.


Assuntos
Nanosferas , Poluentes Químicos da Água , Carbono , Cádmio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Água , Cinética , Adsorção , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
13.
Trends Biotechnol ; 40(5): 535-538, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34893375

RESUMO

Bioelectrochemical systems (BESs) are highly evolved and sophisticated systems that produce bioenergy via exoelectrogenic microbes. Artificial intelligence (AI) helps to understand, relate, model, and predict both process parameters and microbial diversity, resulting in higher performance. This approach has revolutionized BESs through highly advanced computational algorithms that best suit the systems' architecture.


Assuntos
Fontes de Energia Bioelétrica , Inteligência Artificial , Eletrodos
14.
Trends Biotechnol ; 40(12): 1401-1404, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36068120

RESUMO

Biomimicking ruminant digestion strategies (RDSs) into anaerobic digestion (AD) enables efficient bioconversion of lignocellulosic biomass. Understanding RDSs is essential to translate their features into designing and developing bioprocesses and bioreactors. Here, we discuss insights into recently developed bioinspired bioprocesses, bioreactors, and future AD systems based on RDSs.


Assuntos
Reatores Biológicos , Lignina , Animais , Anaerobiose , Lignina/metabolismo , Biomassa , Ruminantes/metabolismo , Digestão , Metano , Biocombustíveis
15.
Chemosphere ; 305: 135472, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35760124

RESUMO

In the present laboratory scale experiment, we report the fabrication of chlorophyll sensitized (BiO)2CO3/CdWO4/rGO (BCR) photo-catalyst. The green approach has been adopted for boosting the optical activity by chlorophyll as a sensitizer. The functionality, nature and surface compositions of synthesized photo-catalyst have been identified by FTIR, XRD and XPS instrumentation. The internal and surface morphology has been studied using FE-SEM and HR-TEM. The optical activity has been investigated by UV-vis and photoluminescence spectroscopy. The catalytic activity of chlorophyll sensitized BCR have been tested for the photo degradation of Chlorzoxazone (CZX) under simulated visible light for 90 min. The detailed comparison has been studied for the different loading amount of chlorophyll and RGO onto BCR photo-catalyst. The potential of BCR for the photo-degradation of CZX was investigated under various operational parameters such as catalysts dosage, pollutant concentration, effect of pH and ions etc. Approximately, 96.2% of CZX has been degraded over 90 min with the optimum catalyst amount 250 mgL-1 at pH 7. The ●OH radical has been identified as major reactive species using radical scavenging experiment. The mineralization of CZX has been evaluated in terms of HR-MS and TOC-COD analysis.


Assuntos
Clorzoxazona , Grafite , Catálise , Clorofila , Grafite/química
16.
Chemosphere ; 299: 134387, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35339529

RESUMO

In the electrocoagulation wastewater treatment process, extremely polluted water treatment requires an effective technique, and using high current is one of those. This study aims to optimize electrocoagulation parameters such as operation time, electrodes gap and the initial pH by applying high current intensity to treat palm oil mill effluent (POME) via Box-Behnken design (BBD) method. Chemical oxygen demand (COD), biological oxygen demand (BOD), and suspended solids (SS) were used as the response variables in the quadratic polynomial model. Most of the selected models in the analysis of variance (ANOVA) have shown significant results. A high connection between the parameters and dependent variables was surprisingly discovered in this study which the obtained value of R2 for removal percentage of COD, BOD and SS were 0.9975, 0.9984 and 0.9979 respectively. Optimal removal was achieved at 19.07 A of current intensity (equivalent to 542 mA/cm2 of current density), 44.97 min of treatment time, 8.60 mm of inter-electrode distance and 4.37 of pH value, resulted in 97.21%, 99.26% and 99.00% of COD, BOD and SS removal respectively. This optimized scheme of operating parameters combination offers an alternate choice for enhancing the treatment efficiency of POME and also can be a benchmark for other researchers to treat highly polluted wastewater.


Assuntos
Resíduos Industriais , Óleos de Plantas , Análise da Demanda Biológica de Oxigênio , Eletrocoagulação/métodos , Resíduos Industriais/análise , Óleo de Palmeira/análise , Óleos de Plantas/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise
17.
Micromachines (Basel) ; 13(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144122

RESUMO

MXenes, a novel family of 2D transition metal carbide, nitride and carbonitride materials, have been gaining tremendous interest in recent days as potential electrocatalysts for various electrochemical reactions, including hydrogen evolution reaction (HER). MXenes are characterized by their etchable metal layers, excellent structural stability, versatility for heteroatoms doping, excellent electronic conductivity, unique surface functional groups and admirable surface area, suitable for the role of electrocatalyst/support in electrochemical reactions, such as HER. In this review article, we summarized recent developments in MXene-based electrocatalysts synthesis and HER performance in terms of the theoretical and experimental point of view. We systematically evaluated the superiority of the MXene-based catalysts over traditional Pt/C catalysts in terms of HER kinetics, Tafel slope, overpotential and stability, both in acidic and alkaline electrolytic environments. We also pointed out the motives behind the electro catalytic enhancements, the effect of synthesis conditions, heteroatom doping, the effect of surface terminations on the electrocatalytic active sites of various MXenes families. At the end, various possible approaches were recommended for a deeper understanding of the active sites and catalytic improvement of MXenes catalysts for HER.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35680745

RESUMO

The leather-making process necessitates large amounts of water and consequently generates tons of liquid waste as leather tannery wastewater (TWW) is disposed of directly in the open environment. Open disposal of untreated TWW into the natural environment causes an accumulation of various polluting compounds, including heavy metals, dyes, suspended solids inorganic matter, biocides, oils, tannins, and other toxic chemicals. It thus poses potential hazards to the environment and human health. This study primarily focuses on providing in-depth insight into the characteristics, treatment strategies, and regulatory frameworks for managing TWW in leather processing industries. Different technologies of conventional physico-chemical (equalization, coagulation, and adsorption), advanced approaches (Fenton oxidation, ozonation, cavitation), thermo-catalytic and biological treatments available to treat TWW, and their integrative approaches were also highlighted. This review also sheds light on the most frequently applied technologies to reduce contaminant load from TWW though there are several limitations associated with it such as being ineffective for large quantities of TWW, waste generation during treatment, and high operational and maintenance (O&M) costs. It is concluded that the sustainable alternatives applied in the current TWW technologies can minimize O&M costs and recirculate the treated water in the environment. The exhaustive observations and recommendations presented in this article are helpful in the industry to manage TWW and recirculate the water in a sustainable manner.

19.
Chemosphere ; 295: 133893, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35134407

RESUMO

Sugarcane bagasse is an abundantly available agricultural waste having high potential that is still underutilized and mostly burnt as fuel. There are various processes available for bagasse utilization in improved ways and one such process is anaerobic digestion (AD) of bagasse for biogas production. The complex structure of biomass is recalcitrant to degradation and is a major hindrance for the anaerobic digestion, so different pretreatment methods are applied to deconstruct the bagasse for microbial digestion. In this review, different processes developed for the pretreatment of bagasse and their effect on biogas production have been extensively covered. Moreover, combination of pretreatment methods, co-digestion of bagasse with other waste (nitrogen rich or easily digestible) for enhanced biogas production and biomethane generation along with other value-added products has also been reviewed. The digestate contains a significant amount of organics with partial recovery of energy and products and is generated in huge amount that further creates disposal problem. Therefore, integration of digestate valorization with AD through gasification, pyrolysis, hydrothermal carbonization and use of microalgae for maximum recovery of energy and value-added products have also been evaluated. Thus, this review highlights major emerging area of research for improvement in bagasse based processes for enhanced biogas production along with digestate valorization to make the overall process economical and sustainable.


Assuntos
Biocombustíveis , Saccharum , Anaerobiose , Celulose/metabolismo , Metano/metabolismo , Saccharum/metabolismo
20.
3 Biotech ; 11(4): 170, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927962

RESUMO

The present study was undertaken to evaluate the antidiabetic and hypolipidemic action of leaf extract of Barleria cristata Linn in rats. Diabetes was induced in the rats by a single intraperitoneal (IP) injection of alloxan (150 mg/kg) and randomly divided into 7 groups. Animals were treated with low (250 mg/kg) and high (500 mg/kg) doses of ethyl acetate leaf extract (EALE) and hydro-alcoholic leaf extract (HALE) up to 21 days. The body weight and blood glucose level (BGL) were measured on weekly basis. The rats were killed under mild ether anesthesia on 21st day, blood and the vital organ were collected to estimate biochemical parameters and to study histopathological changes. A single-dose administration of alloxan induced hyperglycemia in all the groups. A regular increase in BGL was observed in toxic control groups when compared with the normal control. Daily oral administration of rats with extracts (HALE and EALE) and standard drug (Glimepiride, 5 mg/kg), reduced elevated BGL significantly (p < 0.001), and body weight was regained in diabetic rats. The extract treatment also improved the normal functioning of the liver and kidneys as evidenced by the restoration of the biochemical profile. The study revealed that B. cristata possesses promising antidiabetic and hypolipidemic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA