Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microb Pathog ; 149: 104279, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32512154

RESUMO

Bacitracin has well familiar effects on growth and colonization of bacteria but its antibiofilm action on majority of bacteria is still not studied. Bacitracin is a bactericidal antibiotic that primarily acts on Gram positive bacteria by obstructing the process of cell wall synthesis. In this study, we have investigated antibiofilm potential and the mechanism of bacitracin against a cariogenic bacteria 'Streptococcus mutans' which has not been reported so far. Bacitracin has been found to affect propensity of S. mutans to form biofilm. On treatment with sub-MIC concentration of bacitracin resulted in significant reduction in bifilm formation as evaluated by crystal violet and congo red assays. The architecture of S. mutans biofilm was observed by scanning electron microscopy which revealed astonishing phenotype of biofilm. Deficient biofilm was found to be composed of abnormally elongated cells. Transmission electron microscopy showed multiple septa formation in each cell of biofilm thereby indicating, cell division defect as the most probable cause of cell elongation. To elucidate the effect of bacitracin on molecular level, expression profiling of genes critically important for cell division and biofilm formation was performed, which were found many folds downregulated. Bacitracin at very low concentration has been found to have potent antibiofilm activity, therefore is a potential antibiofilm agent to treat oral biofilms. It is being anticipated, this study will offer novel information to identify potential targets and effectively creates true innovation to understand the biofilm's basic biology. Besides, discovering new uses for currently marketed drugs makes commercial as well as research sense.


Assuntos
Bacitracina , Streptococcus mutans , Antibacterianos/farmacologia , Bacitracina/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
2.
IUBMB Life ; 70(5): 355-383, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29679465

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present ubiquitously at the cell surface in all eukaryotes. They play a crucial role in the interaction of the cell with its external environment, allowing the cell to receive signals, respond to challenges, and mediate adhesion. In yeast and fungi, they also participate in the structural integrity of the cell wall and are often essential for survival. Roughly four decades after the discovery of the first GPI-APs, this review provides an overview of the insights gained from studies of the GPI biosynthetic pathway and the future challenges in the field. In particular, we focus on the biosynthetic pathway in Saccharomyces cerevisiae, which has for long been studied as a model organism. Where available, we also provide information about the GPI biosynthetic steps in other yeast/ fungi. Although the core structure of the GPI anchor is conserved across organisms, several variations are built into the biosynthetic pathway. The present Review specifically highlights these variations and their implications. There is growing evidence to suggest that several phenotypes are common to GPI deficiency and should be expected in GPI biosynthetic mutants. However, it appears that several phenotypes are unique to a specific step in the pathway and may even be species-specific. These could suggest the points at which the GPI biosynthetic pathway intersects with other important cellular pathways and could be points of regulation. They could be of particular significance in the study of pathogenic fungi and in identification of new and specific antifungal drugs/ drug targets. © 2018 IUBMB Life, 70(5):355-383, 2018.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Proteínas Ligadas a Lipídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Sequência de Carboidratos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Humanos , Proteínas Ligadas a Lipídeos/química , Proteínas Ligadas a Lipídeos/genética , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Mutação , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Transdução de Sinais , Especificidade da Espécie
3.
Yeast ; 33(8): 365-83, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27337589

RESUMO

CaGpi14 is the catalytic subunit of the first mannosyltransferase that is involved in the glycosylphosphatidylinositol (GPI) biosynthetic pathway in Candida albicans. We show that CaGPI14 is able to rescue a conditionally lethal gpi14 mutant of Saccharomyces cerevisiae, unlike its mammalian homologue. The depletion of this enzyme in C. albicans leads to severe growth defects, besides causing deficiencies in GPI anchor levels. In addition, CaGpi14 depletion results in cell wall defects and upregulation of the cell wall integrity response pathway. This in turn appears to trigger the osmotic-stress dependent activation of the HOG1 pathway and an upregulation of HOG1 as well as its downstream target, SKO1, a known suppressor of expression of hyphae-specific genes. Consistent with this, mutants of CaGPI14 are unable to undergo hyphal transformations in different hyphae-inducing media, under conditions that produce abundant hyphae in the wild-type cells. Hyphal defects in the CaGPI14 mutants could not be attributed either to reduced protein kinase C activation or to defective Ras signalling in these cells but appeared to be driven by perturbations in the HOG1 pathway. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Candida albicans/crescimento & desenvolvimento , Domínio Catalítico , Parede Celular/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Hifas/crescimento & desenvolvimento , Manosiltransferases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Candida albicans/enzimologia , Candida albicans/genética , Genes Letais , Hifas/enzimologia , Hifas/genética , Manosiltransferases/química , Manosiltransferases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Morfogênese , Mutação , Pressão Osmótica , Proteína Quinase C/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização por Electrospray
4.
Glycoconj J ; 31(6-7): 497-507, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25117514

RESUMO

GPI2 encodes for one of the six accessory subunits of the GPI-N-acetylglucosaminyltransferase (GPI-GnT) complex that catalyzes the first step of GPI biosynthesis in S. cerevisiae and C. albicans. It has been previously reported in S. cerevisiae that this subunit physically interacts with and negatively modulates Ras signaling. On the other hand, studies from our lab have shown that the homologous subunit in C. albicans is a positive modulator of Ras signaling. Are the functions of this subunit therefore strictly species dependent? We present here functional complementation studies on GPI2 from S. cerevisiae and C. albicans that were carried out to address this issue. Expression of CaGPI2 in a ScGPI2 conditional lethal mutant could not restore its growth defects. Likewise, ScGPI2 overexpression in a CaGPI2 heterozygous mutant could not restore its deficient GPI-GnT activity or reverse defects in its cell wall integrity and could only poorly restore filamentation. However, interestingly, ScGPI2 could restore lanosterol demethylase (CaERG11) levels and reverse azole resistance of the CaGPI2 heterozygote. It appeared to do this by regulating levels of another GPI-GnT subunit, CaGPI19, which we have previously shown to be involved in cross-talk with CaERG11. Thus, the effect of CaGPI2 on sterol biosynthesis in C. albicans is independent of its interaction with the GPI-GnT complex and Ras signaling pathways. In addition, the interaction of Gpi2 with other subunits of the GPI-GnT complex as well as with Ras signaling appears to have evolved differently in the two organisms.


Assuntos
Candida albicans/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Biocatálise , Primers do DNA , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos
5.
ACS Chem Neurosci ; 15(9): 1770-1786, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38637513

RESUMO

Parkinson's disease arises from protein misfolding, aggregation, and fibrillation and is characterized by LB (Lewy body) deposits, which contain the protein α-synuclein (α-syn) as their major component. Another synuclein, γ-synuclein (γ-syn), coexists with α-syn in Lewy bodies and is also implicated in various types of cancers, especially breast cancer. It is known to seed α-syn fibrillation after its oxidation at methionine residue, thereby contributing in synucleinopathy. Despite its involvement in synucleinopathy, the search for small molecule inhibitors and modulators of γ-syn fibrillation remains largely unexplored. This work reveals the modulatory properties of cyclic-nordihydroguaiaretic acid (cNDGA), a natural polyphenol, on the structural and aggregational properties of human γ-syn employing various biophysical and structural tools, namely, thioflavin T (ThT) fluorescence, Rayleigh light scattering, 8-anilinonaphthalene-1-sulfonic acid binding, far-UV circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR) spectroscopy, atomic force microscopy, ITC, molecular docking, and MTT-toxicity assay. cNDGA was observed to modulate the fibrillation of γ-syn to form off-pathway amorphous species that are nontoxic in nature at as low as 75 µM concentration. The modulation is dependent on oxidizing conditions, with cNDGA weakly interacting (Kd ∼10-5 M) with the residues at the N-terminal of γ-syn protein as investigated by isothermal titration calorimetry and molecular docking, respectively. Increasing cNDGA concentration results in an increased recovery of monomeric γ-syn as shown by sodium dodecyl sulfate and native-polyacrylamide gel electrophoresis. The retention of native structural properties of γ-syn in the presence of cNDGA was further confirmed by far-UV CD and FTIR. In addition, cNDGA is most effective in suppression of fibrillation when added at the beginning of the fibrillation kinetics and is also capable of disintegrating the preformed mature fibrils. These findings could, therefore, pave the ways for further exploring cNDGA as a potential therapeutic against γ-synucleinopathies.


Assuntos
Amiloide , Masoprocol , Agregados Proteicos , gama-Sinucleína , Masoprocol/análogos & derivados , Masoprocol/química , Masoprocol/farmacologia , Humanos , gama-Sinucleína/química , Amiloide/antagonistas & inibidores , Amiloide/química , Agregados Proteicos/efeitos dos fármacos , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Simulação de Acoplamento Molecular , Interações Hidrofóbicas e Hidrofílicas
6.
Sci Rep ; 9(1): 15012, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31611603

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

7.
Sci Rep ; 9(1): 8508, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186458

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins are important for virulence of many pathogenic organisms including the human fungal pathogen, Candida albicans. GPI biosynthesis is initiated by a multi-subunit enzyme, GPI-N-acetylglucosaminyltransferase (GPI-GnT). We showed previously that two GPI-GnT subunits, encoded by CaGPI2 and CaGPI19, are mutually repressive. CaGPI19 also co-regulates CaERG11, the target of azoles while CaGPI2 controls Ras signaling and hyphal morphogenesis. Here, we investigated the role of a third subunit. We show that CaGpi15 is functionally homologous to Saccharomyces cerevisiae Gpi15. CaGPI15 is a master activator of CaGPI2 and CaGPI19. Hence, CaGPI15 mutants are azole-sensitive and hypofilamentous. Altering CaGPI19 or CaGPI2 expression in CaGPI15 mutant can elicit alterations in azole sensitivity via CaERG11 expression or hyphal morphogenesis, respectively. Thus, CaGPI2 and CaGPI19 function downstream of CaGPI15. One mode of regulation is via H3 acetylation of the respective GPI-GnT gene promoters by Rtt109. Azole sensitivity of GPI-GnT mutants is also due to decreased H3 acetylation at the CaERG11 promoter by Rtt109. Using double heterozygous mutants, we also show that CaGPI2 and CaGPI19 can independently activate CaGPI15. CaGPI15 mutant is more susceptible to killing by macrophages and epithelial cells and has reduced ability to damage either of these cell lines relative to the wild type strain, suggesting that it is attenuated in virulence.


Assuntos
Azóis/farmacologia , Vias Biossintéticas , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Subunidades Proteicas/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Linhagem Celular , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cromossomos Fúngicos/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Ergosterol/biossíntese , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Heterozigoto , Hifas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Mutação/genética , Fagocitose/efeitos dos fármacos , Fenótipo , Subunidades Proteicas/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Virulência/efeitos dos fármacos
8.
Sci Rep ; 8(1): 5248, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588468

RESUMO

Ras signaling in response to environmental cues is critical for cellular morphogenesis in eukaryotes. This signaling is tightly regulated and its activation involves multiple players. Sometimes Ras signaling may be hyperactivated. In C. albicans, a human pathogenic fungus, we demonstrate that dynamics of hyperactivated Ras1 (Ras1G13V or Ras1 in Hsp90 deficient strains) can be reliably differentiated from that of normal Ras1 at (near) single molecule level using fluorescence correlation spectroscopy (FCS). Ras1 hyperactivation results in significantly slower dynamics due to actin polymerization. Activating actin polymerization by jasplakinolide can produce hyperactivated Ras1 dynamics. In a sterol-deficient hyperfilamentous GPI mutant of C. albicans too, Ras1 hyperactivation results from Hsp90 downregulation and causes actin polymerization. Hyperactivated Ras1 co-localizes with G-actin at the plasma membrane rather than with F-actin. Depolymerizing actin with cytochalasin D results in faster Ras1 dynamics in these and other strains that show Ras1 hyperactivation. Further, ergosterol does not influence Ras1 dynamics.


Assuntos
Candida albicans/metabolismo , Candidíase/microbiologia , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Actinas/análise , Actinas/metabolismo , Candida albicans/citologia , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Citocalasina D/análise , Citocalasina D/metabolismo , Ergosterol/metabolismo , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP90/análise , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Morfogênese , Regulação para Cima , Proteínas ras/análise , Proteínas ras/genética
9.
Bio Protoc ; 7(11): e2303, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34541072

RESUMO

In this protocol we describe a nonradiolabelled labelling of GPI anchor in Candida albicans. The method uses a fluorescent probe to bind specifically to GPI anchors so that the level of GPI-anchored proteins at the cell surface can be measured. The labelling does not need permeabilization of cells and can be carried out in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA