Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Archaea ; 2019: 1751783, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191117

RESUMO

The inoculum source plays a crucial role in the anaerobic treatment of wastewaters. Lipids are present in various wastewaters and have a high methanogenic potential, but their hydrolysis results in the production of long chain fatty acids (LCFAs) that are inhibitory to anaerobic microorganisms. Screening of inoculum for the anaerobic treatment of LCFA-containing wastewaters has been performed at mesophilic and thermophilic conditions. However, an evaluation of inocula for producing methane from LCFA-containing wastewater has not yet been conducted at low temperatures and needs to be undertaken. In this study, three inocula (one granular sludge and two municipal digester sludges) were assessed for methane production from LCFA-containing synthetic dairy wastewater (SDW) at low temperatures (10 and 20°C). A methane yield (based on mL-CH4/g-CODadded) of 86-65% with acetate and 45-20% with SDW was achieved within 10 days using unacclimated granular sludge, whereas the municipal digester sludges produced methane only at 20°C but not at 10°C even after 200 days of incubation. The acetotrophic activity in the inoculum was found to be crucial for methane production from LCFA at low temperatures, highlighting the role of Methanosaeta (acetoclastic archaea) at low temperatures. The presence of bacterial taxa from the family Syntrophaceae (Syntrophus and uncultured taxa) in the inoculum was found to be important for methane production from SDW at 10°C. This study suggests the evaluation of acetotrophic activity and the initial microbial community characteristics by high-throughput amplicon sequencing for selecting the inoculum for producing methane at low temperatures (up to 10°C) from lipid-containing wastewaters.


Assuntos
Acetatos/metabolismo , Ácidos Graxos/metabolismo , Metano/biossíntese , Microbiota , Esgotos/microbiologia , Temperatura , Anaerobiose , Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Methanosarcinales/crescimento & desenvolvimento , Methanosarcinales/metabolismo
2.
Sci Total Environ ; 874: 162420, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36842571

RESUMO

Fats, oil and grease, and their hydrolyzed counterparts-long chain fatty acids (LCFA) make up a large fraction of numerous wastewaters and are challenging to degrade anaerobically, more so, in low temperature anaerobic digestion (LtAD) systems. Herein, we perform a comparative analysis of publicly available Illumina 16S rRNA datasets generated from LCFA-degrading anaerobic microbiomes at low temperatures (10 and 20 °C) to comprehend the factors affecting microbial community dynamics. The various factors considered were the inoculum, substrate and operational characteristics, the reactor operation mode and reactor configuration, and the type of nucleic acid sequenced. We found that LCFA-degrading anaerobic microbiomes were differentiated primarily by inoculum characteristics (inoculum source and morphology) in comparison to the other factors tested. Inoculum characteristics prominently shaped the species richness, species evenness and beta-diversity patterns in the microbiomes even after long term operation of continuous reactors up to 150 days, implying the choice of inoculum needs careful consideration. The generalised additive models represented through beta diversity contour plots revealed that psychrophilic bacteria RBG-13-54-9 from family Anaerolineae, and taxa WCHB1-41 and Williamwhitmania were highly abundant in LCFA-fed microbial niches, suggesting their role in anaerobic treatment of LCFAs at low temperatures of 10-20 °C. Overall, we showed that the following bacterial genera: uncultured Propionibacteriaceae, Longilinea, Christensenellaceae R7 group, Lactivibrio, candidatus Caldatribacterium, Aminicenantales, Syntrophus, Syntrophomonas, Smithella, RBG-13-54-9, WCHB1-41, Trichococcus, Proteiniclasticum, SBR1031, Lutibacter and Lentimicrobium have prominent roles in LtAD of LCFA-rich wastewaters at 10-20 °C. This study provides molecular insights of anaerobic LCFA degradation under low temperatures from collated datasets and will aid in improving LtAD systems for treating LCFA-rich wastewaters.


Assuntos
Deltaproteobacteria , Microbiota , Anaerobiose , Águas Residuárias , Temperatura , RNA Ribossômico 16S/genética , Reatores Biológicos/microbiologia , Ácidos Graxos/metabolismo , Metano/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Bactérias Anaeróbias/metabolismo
3.
Front Microbiol ; 13: 941532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958148

RESUMO

Coliphages are virus that infect coliform bacteria and are used in aquatic systems for risk assessment for human enteric viruses. This mini-review appraises the types and sources of coliphage and their fate and behavior in source waters and engineered drinking water treatment systems. Somatic (cell wall infection) and F+ (male specific) coliphages are abundant in drinking water sources and are used as indicators of fecal contamination. Coliphage abundances do not consistently correlate to human enteric virus abundance, but they suitably reflect the risks of exposure to human enteric viruses. Coliphages have highly variable surface characteristics with respect to morphology, size, charge, isoelectric point, and hydrophobicity which together interact to govern partitioning and removal characteristics during water treatment. The groups somatic and F+ coliphages are valuable for investigating the virus elimination during water treatment steps and as indicators for viral water quality assessment. Strain level analyses (e.g., Qß or GA-like) provide more information about specific sources of viral pollution but are impractical for routine monitoring. Consistent links between rapid online monitoring tools (e.g., turbidity, particle counters, and flow cytometry) and phages in drinking water have yet to be established but are recommended as a future area of research activity. This could enable the real-time monitoring of virus and improve the process understanding during transient operational events. Exciting future prospects for the use of coliphages in aquatic microbiology are also discussed based on current scientific evidence and practical needs.

4.
Bioresour Technol ; 343: 126098, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626764

RESUMO

Distinct microbial assemblages evolve in anaerobic digestion (AD) reactors to drive sequential conversions of organics to methane. The spatio-temporal development of three such assemblages (granules, biofilms, planktonic) derived from the same inoculum was studied in replicated bioreactors treating long-chain fatty acids (LCFA)-rich wastewater at 20 °C at hydraulic retention times (HRTs) of 12-72 h. We found granular, biofilm and planktonic assemblages differentiated by diversity, structure, and assembly mechanisms; demonstrating a spatial compartmentalisation of the microbiomes from the initial community reservoir. Our analysis linked abundant Methanosaeta and Syntrophaceae-affiliated taxa (Syntrophus and uncultured) to their putative, active roles in syntrophic LCFA bioconversion. LCFA loading rates (stearate, palmitate), and HRT, were significant drivers shaping microbial community dynamics and assembly. This study of the archaea and syntrophic bacteria actively valorising LCFAs at short HRTs and 20 °C will help uncover the microbiology underpinning anaerobic bioconversions of fats, oil and grease.


Assuntos
Microbiota , Plâncton , Anaerobiose , Biofilmes , Reatores Biológicos , Ácidos Graxos , Metano , Esgotos
5.
Chem Res Toxicol ; 24(11): 1899-904, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21967630

RESUMO

The cytotoxicity of Al(2)O(3) nanoparticles (NP) at very low exposure levels (1 µg/mL and less) to a dominant bacterial isolate from freshwater (lake water), Bacillus licheniformis, was examined. Sterile lake water was directly used as a test medium or matrix to simulate the freshwater environment. Exposure to 1 µg/mL Al(2)O(3) NP for 2 h caused a 17% decrease in cell viability (as determined by plate count and MTT assay). During the test period, the particles were found to be stable against aggregation in the matrix and exerted a nano-size effect on the exposed test organisms. The decrease in cell viability was proven not to be due to the release of Al(3+) ions from the nanoparticles in the dispersion. The zeta potential and FT-IR analyses suggested that the surface charge based attachment of nanoparticles on to the bacterial cell wall was responsible for flocculation leading to toxicity. The cell wall damage confirmed through SEM and the lipid peroxidation assay also contributed toward toxicity. This study warns of possible ecotoxicity of nanoparticles even at environmentally relevant concentrations. However, detailed studies need to be carried out to establish probable mechanistic aspects of this low concentration toxicity phenomenon.


Assuntos
Óxido de Alumínio/toxicidade , Bacillus/efeitos dos fármacos , Poluição Ambiental/prevenção & controle , Água Doce/química , Nanopartículas Metálicas/toxicidade , Adsorção , Óxido de Alumínio/efeitos adversos , Óxido de Alumínio/metabolismo , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Aderência Bacteriana , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
6.
Sci Total Environ ; 691: 960-968, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326818

RESUMO

Facilitating anaerobic degradation of long-chain fatty acids (LCFA) is key for tapping the high methane production potential of the fats, oil and grease (FOG) content of dairy wastewaters. In this study, the feasibility of using high-rate granular sludge reactors for the treatment of mixed LCFA-containing synthetic dairy wastewater (SDW) was assessed at 20 °C. The effects of the LCFA concentration (33-45% of COD) and organic loading rates (2-3 gCOD/L·d) were determined using three parallel expanded granular sludge bed reactors. For the first time, long term anaerobic treatment of LCFA-containing feed at 20 °C was shown to be feasible and was linked to the microbial community dynamics in high-rate reactors. During a two-month operation, a soluble COD removal of 84-91% and COD to methane conversion of 44-51% was obtained. However, granular sludge flotation and washout occurred after two months in all reactors without volatile fatty acids (VFA) accumulation, emphasizing the need for sludge retention for long-term granular sludge reactor operation with LCFA-containing feed at low ambient temperatures. The temporal shifts in microbial community structure were studied in the high-rate treatment of SDW, and the process disturbances (elevated LCFA loading, LCFA accumulation, and batch operation) were found to decrease the microbial community diversity. The relative abundance of Methanosaeta increased with higher LCFA accumulation in the settled and flotation layer granules in the three reactors, therefore, acetoclastic methanogenesis was found to be crucial for the high-rate treatment of SDW at 20 °C. This study provides an initial understanding of the continuous anaerobic treatment of LCFA-containing industrial wastewaters at low ambient temperatures.


Assuntos
Indústria de Laticínios , Microbiota , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Anaerobiose
8.
Bioresour Technol ; 239: 226-235, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28521233

RESUMO

Using adsorbents/flocculants in anaerobic membrane bioreactors (AnMBRs) to reduce membrane fouling is comparatively rare. This study evaluated 8 additives: 3 powdered activated carbons, 2 granular activated carbons, 1 cationic polymer, and 2 metal salts to identify the best additive and dose to minimise membrane fouling. Small cross flow filtration tests showed 400mg/L PAC SAE2, or 150mg/L FeCl3, reduced the transmembrane pressure (TMP) rise from 0.94 to 0.06kPa/h, indicating excellent fouling reduction. The best filtration performance correlated with a significant reduction in supernatant supracolloidal particles, colloids and SMPs. FESEM-EDX showed that PAC SAE 2 and FeCl3 reduced the thickness of the fouling layer dramatically, while FeCl3 increased sludge floc size and particle size of the colloids, while decreasing the negative charge of colloids, and SMP size. Furthermore, Fe was not found in the supernatant or effluent, but precipitated with the solids, which is beneficial for its long-term use.


Assuntos
Reatores Biológicos , Carvão Vegetal , Filtração , Membranas Artificiais , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA