Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271294

RESUMO

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Filogeografia , Europa (Continente)/epidemiologia , Surtos de Doenças
2.
PLoS Pathog ; 17(9): e1009878, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473805

RESUMO

SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent but Neuropilin-1-dependent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.


Assuntos
COVID-19/imunologia , Células Dendríticas/classificação , Interferon Tipo I/metabolismo , SARS-CoV-2/imunologia , Adulto , Idoso de 80 Anos ou mais , Infecções Assintomáticas , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/virologia , Células Epiteliais/citologia , Feminino , Hospitalização , Humanos , Interferon Tipo I/imunologia , Pulmão/citologia , Masculino , Pessoa de Meia-Idade , Neuropilina-1/metabolismo , Fenótipo , Índice de Gravidade de Doença , Receptor 7 Toll-Like/metabolismo
3.
Euro Surveill ; 28(33)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37589592

RESUMO

BackgroundUsutu virus (USUV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans are incidental dead-end hosts. In Europe, the virus was first detected in Italy in 1996; since then, it has spread to many European countries.AimWe aimed to report on the epidemiology, surveillance, diagnosis and prevention of USUV infection in humans, mosquitoes and other animals in the European Union/European Economic Area (EU/EEA) from 2012 to 2021.MethodsWe collected information through a literature review, an online survey and an expert meeting.ResultsEight countries reported USUV infection in humans (105 cases, including 12 [corrected] with neurological symptoms), 15 countries in birds and seven in mosquitoes. Infected animals were also found among pets, wild and zoo animals. Usutu virus was detected primarily in Culex pipiens but also in six other mosquito species. Detection of USUV infection in humans is notifiable only in Italy, where it is under surveillance since 2017 and now integrated with surveillance in animals in a One Health approach. Several countries include USUV infection in the differential diagnosis of viral encephalitis and arbovirus infections. Animal USUV infection is not notifiable in any EU/EEA country.ConclusionHuman USUV infections, mainly asymptomatic and, less frequently, with a febrile illness or a neuroinvasive disease, have been reported in several EU/EEA countries, where the virus is endemic. Climate and environmental changes are expected to affect the epidemiology of USUV. A One Health approach could improve the monitoring of its evolution in Europe.


Assuntos
Culicidae , Infecções por Flavivirus , Flavivirus , Animais , Humanos , Diagnóstico Diferencial , Encefalite Viral , Europa (Continente)/epidemiologia , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/epidemiologia , Vigilância em Saúde Pública
4.
Euro Surveill ; 27(29)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35866436

RESUMO

In spring 2022, Europe faced an unprecedented heatwave, increasing the risk of West Nile virus (WNV) outbreaks. As early as 7 June 2022, WNV was detected in Culex mosquitoes in northern Italy, and - in the following days - in two blood donors, a patient with encephalitis, wild birds and additional mosquito pools. Genome sequencing demonstrated co-circulation of WNV lineage 2 and a newly introduced WNV lineage 1, which was discovered in the region in 2021.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Surtos de Doenças , Humanos , Itália/epidemiologia , Estações do Ano , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/genética
5.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499693

RESUMO

Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous malignant tumor with neuroendocrine differentiation, with a rapidly growing incidence rate, high risk of recurrence, and aggressive behavior. The available therapeutic options for advanced disease are limited and there is a pressing need for new treatments. Tumors harboring fusions involving one of the neurotrophin receptor tyrosine kinase (NTRK) genes are now actionable with targeted inhibitors. NTRK-fused genes have been identified in neuroendocrine tumors of other sites; thus, a series of 76 MCCs were firstly analyzed with pan-TRK immunohistochemistry and the positive ones with real-time RT-PCR, RNA-based NGS, and FISH to detect the eventual underlying gene fusion. Despite 34 MCCs showing pan-TRK expression, NTRK fusions were not found in any cases. As in other tumors with neural differentiation, TRK expression seems to be physiological and not caused by gene fusions.


Assuntos
Carcinoma de Célula de Merkel , Neoplasias , Neoplasias Cutâneas , Humanos , Receptor trkA/genética , Carcinoma de Célula de Merkel/genética , Fatores de Crescimento Neural/uso terapêutico , Receptor trkC/genética , Neoplasias/patologia , Neoplasias Cutâneas/genética , Proteínas de Fusão Oncogênica/genética , Biomarcadores Tumorais/genética
6.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652988

RESUMO

In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection.


Assuntos
COVID-19/patologia , Organoides/virologia , SARS-CoV-2/fisiologia , Células-Tronco/virologia , Animais , Apoptose , COVID-19/virologia , Sistema Cardiovascular/citologia , Sistema Cardiovascular/patologia , Sistema Cardiovascular/virologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Pulmão/citologia , Pulmão/patologia , Pulmão/virologia , Organoides/patologia , Células-Tronco/patologia , Tropismo Viral , Internalização do Vírus
7.
PLoS Pathog ; 14(1): e1006790, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300789

RESUMO

Autophagy is a primordial eukaryotic pathway, which provides the immune system with multiple mechanisms for the elimination of invading pathogens including Mycobacterium tuberculosis (Mtb). As a consequence, Mtb has evolved different strategies to hijack the autophagy process. Given the crucial role of human primary dendritic cells (DC) in host immunity control, we characterized Mtb-DC interplay by studying the contribution of cellular microRNAs (miRNAs) in the post-transcriptional regulation of autophagy related genes. From the expression profile of de-regulated miRNAs obtained in Mtb-infected human DC, we identified 7 miRNAs whose expression was previously found to be altered in specimens of TB patients. Among them, gene ontology analysis showed that miR-155, miR-155* and miR-146a target mRNAs with a significant enrichment in biological processes linked to autophagy. Interestingly, miR-155 was significantly stimulated by live and virulent Mtb and enriched in polysome-associated RNA fraction, where actively translated mRNAs reside. The putative pair interaction among the E2 conjugating enzyme involved in LC3-lipidation and autophagosome formation-ATG3-and miR-155 arose by target prediction analysis, was confirmed by both luciferase reporter assay and Atg3 immunoblotting analysis of miR-155-transfected DC, which showed also a consistent Atg3 protein and LC3 lipidated form reduction. Late in infection, when miR-155 expression peaked, both the level of Atg3 and the number of LC3 puncta per cell (autophagosomes) decreased dramatically. In accordance, miR-155 silencing rescued autophagosome number in Mtb infected DC and enhanced autolysosome fusion, thereby supporting a previously unidentified role of the miR-155 as inhibitor of ATG3 expression. Taken together, our findings suggest how Mtb can manipulate cellular miRNA expression to regulate Atg3 for its own survival, and highlight the importance to develop novel therapeutic strategies against tuberculosis that would boost autophagy.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Células Dendríticas/metabolismo , MicroRNAs/genética , Mycobacterium tuberculosis/fisiologia , Enzimas de Conjugação de Ubiquitina/genética , Autofagossomos/imunologia , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Células Cultivadas , Células Dendríticas/microbiologia , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , MicroRNAs/fisiologia , Mycobacterium tuberculosis/imunologia , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores
8.
Euro Surveill ; 24(21)2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31138361

RESUMO

In 2018, there was a large West Nile virus (WNV) outbreak in northern Italy. We observed five atypical cases of WNV infection that were characterised by the presence of WNV RNA and WNV IgG at the time of diagnosis, but no IgM response during follow-up. Neutralisation assays demonstrated pre-existing Usutu virus immunity in all patients. Besides challenging diagnosis, the immunological crosstalk between the two viruses warrants further investigation on possible cross-protection or infection enhancement effects.


Assuntos
Anticorpos Antivirais/sangue , Flavivirus/imunologia , Vigilância em Saúde Pública , Febre do Nilo Ocidental/diagnóstico , Vírus do Nilo Ocidental/isolamento & purificação , Adulto , Animais , Anticorpos Neutralizantes/sangue , Culex/virologia , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Flavivirus/genética , Humanos , Imunoglobulina G/sangue , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Filogenia , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/imunologia
9.
Euro Surveill ; 24(47)2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31771697

RESUMO

BackgroundUsutu virus (USUV) is a mosquito-borne flavivirus, which shares its transmission cycle with the phylogenetically related West Nile virus (WNV). USUV circulates in several European countries and its activity has increased over the last 5 years.AimTo describe human cases of USUV infection identified by surveillance for WNV and USUV infection in the Veneto Region of northern Italy in 2018.MethodsFrom 1 June to 30 November 2018, all cases of suspected autochthonous arbovirus infection and blood donors who had a reactive WNV nucleic acid test were investigated for both WNV and USUV infection by in-house molecular methods. Anti-WNV and anti-USUV IgM and IgG antibodies were detected by ELISA and in-house immunofluorescence assay, respectively; positive serum samples were further tested by WNV and USUV neutralisation assays run in parallel.ResultsEight cases of USUV infection (one with neuroinvasive disease, six with fever and one viraemic blood donor who developed arthralgia and myalgia) and 427 cases of WNV infection were identified. A remarkable finding of this study was the persistence of USUV RNA in the blood and urine of three patients during follow-up. USUV genome sequences from two patients shared over 99% nt identity with USUV sequences detected in mosquito pools from the same area and clustered within lineage Europe 2.ConclusionsClinical presentation and laboratory findings in patients with USUV infection were similar to those found in patients with WNV infection. Cross-reactivity of serology and molecular tests challenged the differential diagnosis.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Culicidae/virologia , Infecções por Flavivirus/diagnóstico , Flavivirus/isolamento & purificação , Vigilância da População/métodos , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Diagnóstico Diferencial , Ensaio de Imunoadsorção Enzimática , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/virologia , Técnicas de Genotipagem , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Itália/epidemiologia , Filogenia , Vigilância de Evento Sentinela , Febre do Nilo Ocidental/virologia , Sequenciamento Completo do Genoma
10.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671583

RESUMO

Generation of human induced pluripotent stem cells (hiPSCs) and their differentiation into a variety of cells and organoids have allowed setting up versatile, non-invasive, ethically sustainable, and patient-specific models for the investigation of the mechanisms of human diseases, including viral infections and host-pathogen interactions. In this study, we investigated and compared the infectivity and replication kinetics in hiPSCs, hiPSC-derived neural stem cells (NSCs) and undifferentiated neurons, and the effect of viral infection on host innate antiviral responses of representative flaviviruses associated with diverse neurological diseases, i.e., Zika virus (ZIKV), West Nile virus (WNV), and dengue virus (DENV). In addition, we exploited hiPSCs to model ZIKV infection in the embryo and during neurogenesis. The results of this study confirmed the tropism of ZIKV for NSCs, but showed that WNV replicated in these cells with much higher efficiency than ZIKV and DENV, inducing massive cell death. Although with lower efficiency, all flaviviruses could also infect pluripotent stem cells and neurons, inducing similar patterns of antiviral innate immune response gene expression. While showing the usefulness of hiPSC-based infection models, these findings suggest that additional virus-specific mechanisms, beyond neural tropism, are responsible for the peculiarities of disease phenotype in humans.


Assuntos
Infecções por Flavivirus/virologia , Flavivirus/patogenicidade , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurônios/virologia , Morte Celular , Diferenciação Celular , Células Cultivadas , Vírus da Dengue/patogenicidade , Vírus da Dengue/fisiologia , Flavivirus/fisiologia , Infecções por Flavivirus/imunologia , Humanos , Células-Tronco Pluripotentes Induzidas/virologia , Modelos Biológicos , Células-Tronco Neurais/virologia , Neurogênese , Neurônios/citologia , Tropismo Viral , Replicação Viral , Vírus do Nilo Ocidental/patogenicidade , Vírus do Nilo Ocidental/fisiologia , Zika virus/patogenicidade , Zika virus/fisiologia
11.
Euro Surveill ; 21(10): 30159, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26987769

RESUMO

We report the isolation of infectious Zika virus (ZIKV) in cell culture from the saliva of a patient who developed a febrile illness after returning from the Dominican Republic to Italy, in January 2016. The patient had prolonged shedding of viral RNA in saliva and urine, at higher load than in blood, for up to 29 days after symptom onset. Sequencing of ZIKV genome showed relatedness with strains from Latin America.


Assuntos
Saliva/virologia , Eliminação de Partículas Virais , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , República Dominicana , Humanos , Itália , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Viagem , Adulto Jovem , Zika virus/genética
12.
Am J Pathol ; 184(12): 3376-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25455689

RESUMO

Penile squamous cell carcinoma (PSCC) is a rare tumor associated with high-risk human papillomavirus (HR-HPV) infection in 30% to 60% of cases. Altered expression of miRNAs has been reported in HPV-related cervical and head and neck cancers, but such data have not been available for PSCC. We analyzed a series of 59 PSCCs and 8 condylomata for presence of HPV infection, for p16(INK4a), Ki-67, and p53 immunohistochemical expression, and for expression of a panel of cellular miRNAs (let-7c, miR-23b, miR-34a, miR-145, miR-146a, miR-196a, and miR-218) involved in HPV-related cancer. HR-HPV DNA (HPV16 in most cases) was detected in 17/59 (29%) PSCCs; all penile condylomata (8/8) were positive for low-risk HPV6 or HPV11. HR-HPV(+) PSCCs overexpressed p16(INK4a) in 88% cases and p53 in 35% of cases, whereas HR-HPV(-) PSCCs were positive for p16(INK4a) and p53 immunostaining in 9% and 44% of cases, respectively. Among the miRNAs investigated, expression of miR-218 was lower in PSCCs with HR-HPV infection and in p53(-) cancers. Hypermethylation of the promoter of the SLIT2 gene, which contains miR-218-1 in its intronic region, was frequently observed in PSCCs, mainly in those with low miR-218 expression. Epigenetic silencing of miR-218 is a common feature in HR-HPV(+) PSCCs and in HR-HPV(-) PSCCs without immunohistochemical detection of p53.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias Penianas/metabolismo , Neoplasias Penianas/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/complicações , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Papillomaviridae , Infecções por Papillomavirus/complicações , Neoplasias Penianas/complicações
13.
Liver Int ; 35(4): 1324-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25417901

RESUMO

BACKGROUND & AIMS: MicroRNAs (miRNAs) have been involved in hepatocarcinogenesis, but little is known on their role in the progression of chronic viral hepatitis. Aim of this study was to identify miRNA signatures associated with stages of disease progression in patients with chronic viral hepatitis. METHODS: MiRNA expression profile was investigated in liver biopsies from patients with chronic viral hepatitis and correlated with clinical, virological and histopathological features. Relevant miRNAs were further investigated. RESULTS: Most of the significant changes in miRNA expression were associated with liver fibrosis stages and included the significant up-regulation of a group of miRNAs that were demonstrated to target the master regulators of epithelial-mesenchymal transition ZEB1 and ZEB2 and involved in the preservation of epithelial cell differentiation, but also in cell proliferation and fibrogenesis. In agreement with miRNA data, immunostaining of liver biopsies showed that expression of the epithelial marker E-cadherin was maintained in severe fibrosis/cirrhosis while expression of ZEBs and other markers of epithelial-mesenchymal transition were low or absent. Severe liver fibrosis was also significantly associated with the down-regulation of miRNAs with antiproliferative and tumour suppressor activity. Similar changes in miRNA and target gene expression were demonstrated along with disease progression in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, suggesting that they might represent a general response to liver injury. CONCLUSION: Chronic viral hepatitis progression is associated with the activation of miRNA pathways that promote cell proliferation and fibrogenesis, but preserve the differentiated hepatocyte phenotype.


Assuntos
Hepatite B Crônica/genética , Hepatite C Crônica/genética , Fígado/metabolismo , MicroRNAs/genética , Animais , Antígenos CD , Caderinas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/metabolismo , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Fígado/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/virologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos , MicroRNAs/metabolismo , Proteínas Repressoras/genética , Índice de Gravidade de Doença , Fatores de Transcrição/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
14.
J Clin Microbiol ; 52(9): 3411-3, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951801

RESUMO

This study demonstrated that West Nile virus (WNV) excreted in the urine of patients with acute infection can be isolated in cell cultures. In addition, the protocols for WNV isolation from urine samples were standardized, and factors that may affect the efficiency of WNV isolation were identified.


Assuntos
Urina/virologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/normas , Humanos , Cultura de Vírus/métodos , Cultura de Vírus/normas
15.
Vector Borne Zoonotic Dis ; 24(6): 396-401, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573211

RESUMO

Background: Autochthonous human West Nile virus (WNV) infections were notified in the infectious disease surveillance system in Germany in 2018 for the first time and every year since then. Since clinically apparent infections are infrequent, we conducted two studies to investigate subclinical infections of this emerging disease in Germany in 2019 to detect infections not visible to surveillance based on symptomatic infections: limited-scope blood donor testing and a serosurvey among employees at two Berlin zoos with a history of demonstrated WNV infections in animals. Methods: For the zoo study, employees of the two zoos in Berlin were invited to participate in the study in late 2019. Blood samples were drawn and tested for the presence of antibodies (immunoglobulin M [IgM] and immunoglobulin G [IgG]) against WNV, and two other flaviviruses present in Germany: Usutu virus and Tick-borne encephalitis virus (TBEV). For the study in blood donors, four blood establishments with collection sites in regions with documented WNV-infected animals in 2018 and 2019 participated in the study. All donations in these regions were tested for WNV genome from July to November 2019. Results: In the enzyme-linked immunosorbent assay, none of the 70 tested zoo employees were WNV IgM-positive, 8 were WNV IgG-positive, additional 2 participants had equivocal results. All 10 were negative in the virus neutralization test (VNT) for WNV, but positive in the VNT for TBEV. None of the 4273 samples from blood donors tested in areas with WNV-infected animals was positive for WNV-RNA. Conclusion: Our results indicate that WNV circulation in Germany, though clearly documented in animals in 2019, apparently affected very few humans. Still areas with WNV-positive animals remain risk areas for human infection as well.


Assuntos
Anticorpos Antivirais , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Vírus do Nilo Ocidental/imunologia , Alemanha/epidemiologia , Animais , Anticorpos Antivirais/sangue , Doadores de Sangue , Masculino , Animais de Zoológico , Feminino , Adulto , Pessoa de Meia-Idade , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/veterinária , Doenças Transmissíveis Emergentes/virologia , Imunoglobulina G/sangue , Estudos Soroepidemiológicos
16.
ACS Chem Neurosci ; 14(11): 2089-2097, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172190

RESUMO

Angiotensin-converting enzyme 2 receptor (ACE2R) is a transmembrane protein expressed in various tissues throughout the body that plays a key role in the regulation of blood pressure. Recently, ACE2R has gained significant attention due to its involvement in the pathogenesis of COVID-19, the disease caused by the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). While ACE2 receptors serve as entry points for the novel coronavirus, Transmembrane Serine Protease 2 (TMPRSS2), an enzyme located on the cell membrane, is required for SARS-CoV-2 S protein priming. Even though numerous studies have assessed the effects of COVID-19 on the brain, very little information is available concerning the distribution of ACE2R and TMPRSS2 in the human brain, with particular regard to their topographical expression in the brainstem. In this study, we investigated the expression of ACE2R and TMPRSS2 in the brainstem of 18 adult subjects who died due to pneumonia/respiratory insufficiency. Our findings indicate that ACE2R and TMPRSS2 are expressed in neuronal and glial cells of the brainstem, particularly at the level of the vagal nuclei of the medulla and the midbrain tegmentum, thus confirming the expression and anatomical localization of these proteins within specific human brainstem nuclei. Furthermore, our findings help to define anatomically susceptible regions to SARS-CoV-2 infection in the brainstem, advancing knowledge on the neuropathological underpinnings of neurological manifestations in COVID-19.


Assuntos
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Tronco Encefálico , Serina Endopeptidases/genética
17.
NPJ Parkinsons Dis ; 9(1): 25, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781876

RESUMO

Neurological manifestations are common in COVID-19, the disease caused by SARS-CoV-2. Despite reports of SARS-CoV-2 detection in the brain and cerebrospinal fluid of COVID-19 patients, it is still unclear whether the virus can infect the central nervous system, and which neuropathological alterations can be ascribed to viral tropism, rather than immune-mediated mechanisms. Here, we assess neuropathological alterations in 24 COVID-19 patients and 18 matched controls who died due to pneumonia/respiratory failure. Aside from a wide spectrum of neuropathological alterations, SARS-CoV-2-immunoreactive neurons were detected in the dorsal medulla and in the substantia nigra of five COVID-19 subjects. Viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation within affected brainstem regions, and was higher when compared to controls. While the results of this study support the neuroinvasive potential of SARS-CoV-2 and characterize the role of brainstem inflammation in COVID-19, its potential implications for neurodegeneration, especially in Parkinson's disease, require further investigations.

18.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37748810

RESUMO

During the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), positive-sense genomic RNA and subgenomic RNAs (sgRNAs) are synthesized by a discontinuous process of transcription characterized by a template switch, regulated by transcription-regulating sequences (TRS). Although poorly known about makeup and dynamics of sgRNAs population and function of its constituents, next-generation sequencing approaches with the help of bioinformatics tools have made a significant contribution to expand the knowledge of sgRNAs in SARS-CoV-2. For this scope to date, Periscope, LeTRS, sgDI-tector, and CORONATATOR have been developed. However, limited number of studies are available to compare the performance of such tools. To this purpose, we compared Periscope, LeTRS, and sgDI-tector in the identification of canonical (c-) and noncanonical (nc-) sgRNA species in the data obtained with the Illumina ARTIC sequencing protocol applied to SARS-CoV-2-infected Caco-2 cells, sampled at different time points. The three software showed a high concordance rate in the identification and in the quantification of c-sgRNA, whereas more differences were observed in nc-sgRNA. Overall, LeTRS and sgDI-tector result to be adequate alternatives to Periscope to analyze Fastq data from sequencing platforms other than Nanopore.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Subgenômico , Células CACO-2 , Biologia Computacional , RNA
19.
Clin Transl Immunology ; 12(3): e1434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969367

RESUMO

Objectives: The very rapidly approved mRNA-based vaccines against SARS-CoV-2 spike glycoprotein, including Pfizer-BioNTech BNT162b2, are effective in protecting from severe coronavirus disease 2019 (COVID-19) in immunocompetent population. However, establishing the duration and identifying correlates of vaccine-induced protection will be crucial to optimise future immunisation strategies. Here, we studied in healthy vaccine recipients and people with multiple sclerosis (pwMS), undergoing different therapies, the regulation of innate immune response by mRNA vaccination in order to correlate it with the magnitude of vaccine-induced protective humoral responses. Methods: Healthy subjects (n = 20) and matched pwMS (n = 22) were longitudinally sampled before and after mRNA vaccination. Peripheral blood mononuclear cell (PBMC)-associated type I and II interferon (IFN)-inducible gene expression, serum innate cytokine/chemokine profile as well as binding and neutralising anti-SARS-COV-2 antibodies (Abs) were measured. Results: We identified an early immune module composed of the IFN-inducible genes Mx1, OAS1 and IRF1, the serum cytokines IL-15, IL-6, TNF-α and IFN-γ and the chemokines IP-10, MCP-1 and MIG, induced 1 day post second and third BNT162b2 vaccine doses, strongly correlating with magnitude of humoral response to vaccination in healthy and MS vaccinees. Moreover, induction of the early immune module was dramatically affected in pwMS treated with fingolimod and ocrelizumab, both groups unable to induce a protective humoral response to COVID-19 vaccine. Conclusion: Overall, this study suggests that the vaccine-induced early regulation of innate immunity is mediated by IFN signalling, impacts on the magnitude of adaptive responses and it might be indicative of vaccine-induced humoral protection.

20.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37347462

RESUMO

Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.


Assuntos
Interferon Tipo I , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Chlorocebus aethiops , Humanos , Células Vero , Autoanticorpos , Anticorpos Antivirais , Interferon-alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA