Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Mol Model ; 28(4): 85, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377023

RESUMO

An experimental and theoretical study based on DFT/TD-DFT approximations is presented to understand the nature of electronic excitations, reactivity, and nonlinear optical (NLO) properties of reactive orange 16 dye (RO16), an azo chromophore widely used in textile and pharmacological industries. The results show that the solvent has a considerable influence on the electronic properties of the material. According to experimental results, the absorption spectrum is formed by four intense transitions, which have been identified as [Formula: see text] states using TD-DFT calculations. However, the TD-DFT results reveal a weak [Formula: see text] in the low-lying spectral region. Continuum models of solvation indicate that these states suffer from bathochromic (ca. 15 nm) and hypsochromic shifts (ca. 4 nm), respectively. However, the expected blue shift for the absorption [Formula: see text] is only described using long-range or dispersion-corrected DFT methods. RO16 is classified as a strong electrophilic system, with electrophilicity ω > 1.5 eV. Concerning the nucleophilicity parameter (N), from vacuum to solvent, the environment is active and changes the nucleophilic status from strong to moderate nucleophile (2.0 ≤ N ≤ 3.0 eV). The results also suggest that all electrical constants are strongly dependent on long-range and Hartree-Fock exchange contributions, and the absence of these interactions gives results far from reality. In particular, the results for the NLO response show that the chromophore presents a potential application in this field with a low refractive index and first hyperpolarizability ca. 214 times bigger than the value usually reported for urea (ß = 0.34 × 10- 30 esu), which is a standard NLO material. Concerning the solvent effects, the results indicate that the polarizability increases [Formula: see text] esu from gas to solvent while the first hyperpolarizability is calculated as [Formula: see text] esu, ca. 180%, regarding the vacuum. The results suggest RO16 is a potential compound in NLO applications. Graphical Abstract The frontier molecular orbitals, and the inverse relation between the energy-gap (Egap) and the first hyperpolarizability (ß).

2.
J Mol Graph Model ; 101: 107755, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007576

RESUMO

We present a careful analysis of the electron transport in a variety of steroid derivatives attached among Au (111) electrodes. Our discussion is based on the non-equilibrium Green's function formalism coupled to the density functional theory, as well as appropriate parameters, such as the current-voltage behavior, differential conductance, rectification ratio, transmittance, the projected density of states, and the corresponding eigenchannels. The systems investigated present antagonistic features. While the cholesterol has no appreciable electrical rectification and works as an insulator, cortisol presents an evident diode-like behavior with an intense micro-ampere current with a strong peak at ca. 0.3 eV. This characteristic is a consequence of the systematic remotion of saturated carbon chains, and the inclusion of oxygen atoms. These results can help to understand biological processes involving these molecules besides designing new devices for applications in molecular electronics.


Assuntos
Elétrons , Oxigênio , Transporte de Elétrons , Eletrônica , Esteroides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA