Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 64: 32-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25481343

RESUMO

During development and after birth neural stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to populate the olfactory bulb (OB) with neurons. Multiple factors promote neuroblast migration, but the contribution that many of these make to guidance within the intact RMS is not known. In the present study we have characterised in detail how endocannabinoid (eCB), BDNF and FGF receptor (FGFR) signalling regulates motility and guidance, and also determined whether any of these receptors operate in a regionally restricted manner. We used in vivo electroporation in postnatal mice to fluorescently label neuroblasts, and live cell imaging to detail their migratory properties. Cannabinoid receptor antagonists rendered neuroblasts less mobile, and when they did move guidance was lost. Similar results were obtained when eCB synthesis was blocked with diacylglycerol lipase (DAGL) inhibitors, and importantly eCB function is required for directed migration at both ends of the RMS. Likewise, inhibition of BDNF signalling disrupted motility and guidance in a similar manner along the entire RMS. In contrast, altering FGFR signalling inhibits motility and perturbs guidance, but only at the beginning of the stream. Inhibition of FGFR signalling in vivo also reduces the length of the leading process on migratory neuroblasts in a graded manner along the RMS. These results provide evidence for a guidance function for all three of the above receptor systems in the intact RMS, but show that FGFR signalling is unique as it is required in a regionally specific manner.


Assuntos
Axônios/metabolismo , Movimento Celular , Neurogênese , Receptor trkB/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Axônios/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Feminino , Lipase Lipoproteica/antagonistas & inibidores , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo
2.
J Neurosci ; 33(30): 12171-85, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884926

RESUMO

After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is a fundamental event controlling the proper integration of new neurons in a pre-existing synaptic network. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we show that the actin-bundling protein fascin is highly upregulated in mouse SVZ-derived migratory neuroblasts. Fascin-1ko mice display an abnormal RMS and a smaller OB. Bromodeoxyuridine labeling experiments show that lack of fascin significantly impairs neuroblast migration, but does not appear to affect cell proliferation. Moreover, fascin depletion substantially alters the polarized morphology of rat neuroblasts. Protein kinase C (PKC)-dependent phosphorylation of fascin on Ser39 regulates its actin-bundling activity. In vivo postnatal electroporation of phosphomimetic (S39D) or nonphosphorylatable (S39A) fascin variants followed by time-lapse imaging of brain slices demonstrates that the phospho-dependent modulation of fascin activity ensures efficient neuroblast migration. Finally, fluorescence lifetime imaging microscopy studies in rat neuroblasts reveal that the interaction between fascin and PKC can be modulated by cannabinoid signaling, which controls neuroblast migration in vivo. We conclude that fascin, whose upregulation appears to mark the transition to the migratory neuroblast stage, is a crucial regulator of neuroblast motility. We propose that a tightly regulated phospho/dephospho-fascin cycle modulated by extracellular signals is required for the polarized morphology and migration in neuroblasts, thus contributing to efficient neurogenesis.


Assuntos
Movimento Celular/fisiologia , Interneurônios/fisiologia , Proteínas dos Microfilamentos/fisiologia , Células-Tronco Neurais/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Animais , Canabinoides/metabolismo , Feminino , Interneurônios/citologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neurais/citologia , Bulbo Olfatório/anormalidades , Bulbo Olfatório/citologia , Fosforilação/fisiologia , Cultura Primária de Células , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Odorantes , Transdução de Sinais/fisiologia , Nicho de Células-Tronco/fisiologia
3.
PLoS One ; 10(5): e0126478, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945928

RESUMO

After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is crucial for the proper integration of newborn neurons in a pre-existing synaptic network and is believed to play a key role in infant human brain development. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we have investigated the function of drebrin, an actin-binding protein highly expressed in the RMS of the postnatal mammalian brain. Neuroblast migration was monitored both in culture and in brain slices obtained from electroporated mice by time-lapse spinning disk confocal microscopy. Depletion of drebrin using distinct RNAi approaches in early postnatal mice affects neuroblast morphology and impairs neuroblast migration and orientation in vitro and in vivo. Overexpression of drebrin also impairs migration along the RMS and affects the distribution of neuroblasts at their final destination, the OB. Drebrin phosphorylation on Ser142 by Cyclin-dependent kinase 5 (Cdk5) has been recently shown to regulate F-actin-microtubule coupling in neuronal growth cones. We also investigated the functional significance of this phosphorylation in RMS neuroblasts using in vivo postnatal electroporation of phosphomimetic (S142D) or non-phosphorylatable (S142A) drebrin in the SVZ of mouse pups. Preventing or mimicking phosphorylation of S142 in vivo caused similar effects on neuroblast dynamics, leading to aberrant neuroblast branching. We conclude that drebrin is necessary for efficient migration of SVZ-derived neuroblasts and propose that regulated phosphorylation of drebrin on S142 maintains leading process stability for polarized migration along the RMS, thus ensuring proper neurogenesis.


Assuntos
Ventrículos Laterais/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Bulbo Olfatório/citologia , Actinas/metabolismo , Animais , Movimento Celular , Quinase 5 Dependente de Ciclina/metabolismo , Eletroporação , Feminino , Humanos , Ventrículos Laterais/crescimento & desenvolvimento , Masculino , Camundongos , Microtúbulos/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Neuropeptídeos/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
4.
J Vis Exp ; (81): e50989, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24300093

RESUMO

The subventricular zone (SVZ) located in the lateral wall of the lateral ventricles plays a fundamental role in adult neurogenesis. In this restricted area of the brain, neural stem cells proliferate and constantly generate neuroblasts that migrate tangentially in chains along the rostral migratory stream (RMS) to reach the olfactory bulb (OB). Once in the OB, neuroblasts switch to radial migration and then differentiate into mature neurons able to incorporate into the preexisting neuronal network. Proper neuroblast migration is a fundamental step in neurogenesis, ensuring the correct functional maturation of newborn neurons. Given the ability of SVZ-derived neuroblasts to target injured areas in the brain, investigating the intracellular mechanisms underlying their motility will not only enhance the understanding of neurogenesis but may also promote the development of neuroregenerative strategies. This manuscript describes a detailed protocol for the transfection of primary rodent RMS postnatal neuroblasts and the analysis of their motility using a 3D in vitro migration assay recapitulating their mode of migration observed in vivo. Both rat and mouse neuroblasts can be quickly and efficiently transfected via nucleofection with either plasmid DNA, small hairpin (sh)RNA or short interfering (si)RNA oligos targeting genes of interest. To analyze migration, nucleofected cells are reaggregated in 'hanging drops' and subsequently embedded in a three-dimensional matrix. Nucleofection per se does not significantly impair the migration of neuroblasts. Pharmacological treatment of nucleofected and reaggregated neuroblasts can also be performed to study the role of signaling pathways involved in neuroblast migration.


Assuntos
Movimento Celular/fisiologia , Neurônios/fisiologia , Transfecção/métodos , Animais , Movimento Celular/genética , DNA/administração & dosagem , DNA/genética , Camundongos , Neurônios/citologia , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos
5.
PLoS One ; 8(11): e78478, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244313

RESUMO

Signalling through EGF, FGF and endocannabinoid (eCB) receptors promotes adult neurogenesis, and this can be modelled in culture using the Cor-1 neural stem cell line. In the present study we show that Cor-1 cells express a TGFß receptor complex composed of the ActRIIB/ALK5 subunits and that a natural ligand for this receptor complex, GDF11, activates the canonical Smad2/3 signalling cascade and significantly alters the expression of ∼4700 gene transcripts within a few hours of treatment. Many of the transcripts regulated by GDF11 are also regulated by the EGF, FGF and eCB receptors and by the MAPK pathway - however, in general in the opposite direction. This can be explained to some extent by the observation that GDF11 inhibits expression of, and signalling through, the EGF receptor. GDF11 regulates expression of numerous cell-cycle genes and suppresses Cor-1 cell proliferation; interestingly we found down-regulation of Cyclin D2 rather than p27kip1 to be a good molecular correlate of this. GDF11 also inhibited the expression of numerous genes linked to cytoskeletal regulation including Fascin and LIM and SH3 domain protein 1 (LASP1) and this was associated with an inhibition of Cor-1 cell migration in a scratch wound assay. These data demonstrate GDF11 to be a master regulator of neural stem cell transcription that can suppress cell proliferation and migration by regulating the expression of numerous genes involved in both these processes, and by suppressing transcriptional responses to factors that normally promote proliferation and/or migration.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Movimento Celular/fisiologia , Proliferação de Células , Fatores de Diferenciação de Crescimento/metabolismo , Transcrição Gênica/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Linhagem Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fatores de Diferenciação de Crescimento/genética , Humanos , Células-Tronco Neurais , Transdução de Sinais/fisiologia , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
6.
J Vis Exp ; (81)2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24326479

RESUMO

The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair.


Assuntos
Encéfalo/citologia , Movimento Celular/fisiologia , Eletroporação/métodos , Células-Tronco Neurais/citologia , Neurônios/citologia , Imagem Óptica/métodos , Imagem com Lapso de Tempo/métodos , Animais , Animais Recém-Nascidos , Química Encefálica , Ventrículos Cerebrais/citologia , Camundongos , Neurogênese , Bulbo Olfatório/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA