Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(3): e2305539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699754

RESUMO

Artificial enzymes, as alternatives to natural enzymes, have attracted enormous attention in the fields of catalysis, biosensing, diagnostics, and therapeutics because of their high stability and low cost. Polyoxometalates (POMs), a class of inorganic metal oxides, have recently shown great potential in mimicking enzyme activity due to their well-defined structure, tunable composition, high catalytic efficiency, and easy storage properties. This review focuses on the recent advances in POM-based artificial enzymes. Different types of POMs and their derivatives-based mimetic enzyme functions are covered, as well as the corresponding catalytic mechanisms (where available). An overview of the broad applications of representative POM-based artificial enzymes from biosensing to theragnostic is provided. Insight into the current challenges and the future directions for POMs-based artificial enzymes is discussed.


Assuntos
Ânions , Polieletrólitos , Ânions/química , Polieletrólitos/química , Enzimas
2.
Small ; 20(28): e2310857, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38349039

RESUMO

Photocatalytic oxidative coupling of CH4 (OCM) is a promising CH4 conversion process that can achieve efficient methane conversion with the assistance of O2. It remains to be highly challenging to improve the photocatalytic OCM activity from catalyst design and to deepen the understanding of the reactant activation in the OCM process. In this work, the Au-loaded ZnAl-layered double hydroxides (LDHs) with and without oxygen vacancy are constructed (denoted as Au/ZnAl and Au/ZnAl-v), respectively. When applied for photocatalytic OCM, the Au/ZnAl-v shows a CH4 conversion rate of 8.5 mmol g-1 h-1 with 92% selectivity of C2H6 at 40 °C, outperforming most reported photocatalytic OCM systems at low temperature reported in the literature. Furthermore, the catalytic performance of Au/ZnAl-v can be stable for 100 h. In contrast, the An/ZnAl exhibits a CH4 conversion rate of 0.8 mmol g-1 h-1 with 46% selectivity of C2H6. Detailed characterizations and DFT calculation studies reveal that the introduced Ov sites on Au/ZnAl-v are able to activate O2, and the resulting superoxide radical O2·- greatly promotes the activation of CH4. The coupling of CH3· groups with the assistance of Au cocatalyst leads to the formation of C2H6 with high photocatalytic activity.

3.
Small ; 20(19): e2307975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098446

RESUMO

Electrochemical methanol oxidation reaction (MOR) is regarded as a promising pathway to obtain value-added chemicals and drive cathodic H2 production, while the rational design of catalyst and in-depth understanding of the structure-activity relationship remains challenging. Herein, the ultrathin NiV-LDH (u-NiV-LDH) with abundant defects is successfully synthesized, and the defect-enriched structure is finely determined by X-ray adsorption fine structure etc. When applied for MOR, the as-prepared u-NiV-LDH presents a low potential of 1.41 V versus RHE at 100 mA cm-2, which is much lower than that of bulk NiV-LDH (1.75 V vs RHE) at the same current density. The yield of H2 and formate is 98.2% and 88.1% as its initial over five cycles and the ultrathin structure of u-NiV-LDH can be well maintained. Various operando experiments and theoretical calculations prove that the few-layer stacking structure makes u-NiV-LDH free from the interlayer hydrogen diffusion process and the hydrogen can be directly detached from LDH laminate. Moreover, the abundant surface defects upshift the d-band center of u-NiV-LDH and endow a higher local methanol concentration, resulting in an accelerated dehydrogenation kinetics on u-NiV-LDH. The synergy of the proton detachment from the laminate and the methanol dehydrogenation oxidation contributes to the excellent MOR performance of u-NiV-LDH.

4.
Chemistry ; 30(9): e202303092, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38057492

RESUMO

While great achievements have been made in the development of mechanically robust nanocomposite hydrogels, incorporating multiple interactions on the bases of two demensional inorganic cross-linkers to construct self-strengthening hydrogels has rarely been investigated. To this end, we propose here a new method for the coupling the dynamic covalent bonds and non-covalent interactions within a pseudo double-network system. The pseudo first network, formed through the Schiff Base reation between Tris-modified layered double hydroxides (Tris-LDHs) and oxidized dextran (ODex), is linked to the second network built upon non-covalent interactions between Tris-LDHs and poly(acrylamide-co-2-acrylamido-2-methyl-propanesulfonate) (p-(AM-co-AMPS). The swelling and mechanical properties of the resulting hydrogels have been investigated as a function of the ODex and AMPS contents. The as-prepared hydrogel can swell to 420 times of its original size and retain more than 99.9 wt.% of water. Mechanical tests show that the hydrogel can bear 90 % of compression and is able to be stretched to near 30 times of its original length. Cyclic tensile tests reveal that the hydrogels are capable of self-strengthening after mechanical training. The unique energy dissipation mechanism based on the dynamic covalent and non-covalent interactions is considered to be responsible for the outstanding swelling and mechanical performances.

5.
Brain Topogr ; 37(1): 19-36, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37996562

RESUMO

Transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) provide unique insights into cortical excitability and connectivity. However, confounding EEG signals from auditory and somatosensory co-stimulation complicate TEP interpretation. Our optimized sham procedure established with TMS of primary motor cortex (Gordon in JAMA 245:118708, 2021) differentiates direct cortical EEG responses to TMS from those caused by peripheral sensory inputs. Using this approach, this study aimed to investigate TEPs and their test-retest reliability when targeting regions outside the primary motor cortex, specifically the left angular gyrus, supplementary motor area, and medial prefrontal cortex. We conducted three identical TMS-EEG sessions one week apart involving 24 healthy participants. In each session, we targeted the three areas separately using a figure-of-eight TMS coil for active TMS, while a second coil away from the head produced auditory input for sham TMS. Masking noise and electric scalp stimulation were applied in both conditions to achieve matched EEG responses to peripheral sensory inputs. High test-retest reliability was observed in both conditions. However, reliability declined for the 'cleaned' TEPs, resulting from the subtraction of evoked EEG response to the sham TMS from those to the active, particularly for latencies > 100 ms following the TMS pulse. Significant EEG differences were found between active and sham TMS at latencies < 90 ms for all targeted areas, exhibiting distinct spatiotemporal characteristics specific to each target. In conclusion, our optimized sham procedure effectively reveals EEG responses to direct cortical activation by TMS in brain areas outside primary motor cortex. Moreover, we demonstrate the impact of peripheral sensory inputs on test-retest reliability of TMS-EEG responses.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiologia , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Potencial Evocado Motor/fisiologia
6.
Brain Topogr ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598019

RESUMO

Electroencephalogram (EEG) recorded as response to transcranial magnetic stimulation (TMS) can be highly informative of cortical reactivity and connectivity. Reliable EEG interpretation requires artifact removal as the TMS-evoked EEG can contain high-amplitude artifacts. Several methods have been proposed to uncover clean neuronal EEG responses. In practice, determining which method to select for different types of artifacts is often difficult. Here, we used a unified data cleaning framework based on beamforming to improve the algorithm selection and adaptation to the recorded signals. Beamforming properties are well understood, so they can be used to yield customized methods for EEG cleaning based on prior knowledge of the artifacts and the data. The beamforming implementations also cover, but are not limited to, the popular TMS-EEG cleaning methods: independent component analysis (ICA), signal-space projection (SSP), signal-space-projection-source-informed-reconstruction method (SSP-SIR), the source-estimate-utilizing noise-discarding algorithm (SOUND), data-driven Wiener filter (DDWiener), and the multiple-source approach. In addition to these established methods, beamforming provides a flexible way to derive novel artifact suppression algorithms by considering the properties of the recorded data. With simulated and measured TMS-EEG data, we show how to adapt the beamforming-based cleaning to different data and artifact types, namely TMS-evoked muscle artifacts, ocular artifacts, TMS-related peripheral responses, and channel noise. Importantly, beamforming implementations are fast to execute: We demonstrate how the SOUND algorithm becomes orders of magnitudes faster via beamforming. Overall, the beamforming-based spatial filtering framework can greatly enhance the selection, adaptability, and speed of EEG artifact removal.

7.
Angew Chem Int Ed Engl ; 63(6): e202312187, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37950339

RESUMO

The construction of organic-inorganic hybrid supramolecular polymers using polyoxometalate (POM) as building block is expected to bring new opportunities to the functionalization of supramolecular polymers and the development of novel POM-based soft materials. Here, by using the orthogonal self-assembly based on host-guest interactions and metal-ligand interactions, we report the in situ construction of a novel POM-based hybrid supramolecular polymer (POM-SP) at the oil-water interface, while the redox and competitive responsiveness can be triggered independently. Moreover, the binding energy of POM-SP at the interface is sufficiently strong so that the assembly of POM-SP jams, allowing the stabilization of liquids in nonequilibrium shapes, offering the possibility of fabricating all-liquid constructs with reconfigurability.

8.
Biochem Biophys Res Commun ; 640: 183-191, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516527

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. To date, no medication has been approved to treat NAFLD. In this study, we evaluated the therapeutic effect of the natural flavone acacetin on high-fat diet (HFD)-induced NAFLD in mice and the underlying mechanisms. We found that acacetin (10, 20, 50 mg/kg/day) suppressed the increase in body weight, serum total cholesterol, triglycerides, low-density lipoprotein, aspartate aminotransferase, and alanine aminotransferase levels in mice fed with HFD with a dose-dependent manner. Hepatic lipid accumulation, iron overload, and lipid peroxidation were significantly alleviated by acacetin. Quantitative PCR and western blotting revealed that acacetin inhibited endoplasmic reticulum (ER) stress, ferroptosis, and expressions of lipid acid synthesis-related genes in the livers of HFD mice. Similar results were observed in HepG2 cells treated with oleic acid and lipopolysaccharide. The suppressive effects of acacetin on triglycerides and expression of lipid acid synthesis genes were abolished by ER stress and the ferroptosis activators, erastin or TU. Interestingly, the action of TU was more potent than that of erastin. Treatment with the ER stress inhibitor GSK and the ferroptosis inhibitor Fer-1 revealed that ER stress was the upstream signal of ferroptosis for hepatic lipid accumulation. These findings suggest the protective effect of acacetin against lipid accumulation via suppressing ER stress and ferroptosis and provide evidence that ER stress is an upstream signal of ferroptosis in lipid accumulation. Acacetin may be a promising candidate agent for NAFLD treatment.


Assuntos
Ferroptose , Flavonas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Flavonas/metabolismo , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL
9.
Small ; 19(50): e2304604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635099

RESUMO

Selective conversion of ethane (C2 H6 ) to high-value-added chemicals is a very important chemical process, yet it remains challenging owing to the difficulty of ethane activation. Here, a NiTi-layered double hydroxide (NiTi-LDH) photocatalyst is reported for oxidative coupling of ethane to n-butane (n-C4 H10 ) by using CO2 as an oxidant. Remarkably, the as-prepared NiTi-LDH exhibits a high selectivity for n-C4 H10 (92.35%) with a production rate of 62.06 µmol g-1 h-1 when the feed gas (CO2 /C2 H6 ) ratio is 2:8. The X-ray absorption fine structure (XAFS) and photoelectron characterizations demonstrate that NiTi-LDH possesses rich vacancies and high electron-hole separation efficiency, which can promote the coupling of C2 H6 to n-C4 H10 . More importantly, density functional theory (DFT) calculations reveal that ethane is first activated on the oxygen vacancies of the catalyst surface, and the C─C coupling pathway is more favorable than the C─H cleavage to C2 H4 or CH4 , resulting in the high production rate and selectivity for n-C4 H10 .

10.
Small ; 19(11): e2205770, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36635004

RESUMO

Converting CO2 to clean-burning fuel such as natural gas (CH4 ) with high activity and selectivity remains to be a grand challenge due to slow kinetics of multiple electron transfer processes and competitive hydrogen evolution reaction (HER). Herein, the fabrication of surfactants (C11 H23 COONa, C12 H25 SO4 Na, C16 H33 SO4 Na) intercalated NiAl-layered double hydroxides (NiAl-LDH) is reported, resulting in the formation of LDH-S1 (S1 = C11 H23 COO- ), LDH-S2 (S2 = C12 H25 SO4 - ) and LDH-S3 (S3 = C16 H33 SO4 - ) with curved morphology. Compared with NiAl-LDH with a 1.53% selectivity of CH4 , LDH-S2 shows higher selectivity of CH4 (83.07%) and lower activity of HER (3.84%) in CO2 photoreduction reaction (CO2 PR). Detailed characterizations and DFT calculation indicates that the inherent lattice strain in LDH-S2 leads to the structural distortion with the presence of VNi/Al defects and compressed MOM bonds, and thereby reduces the overall energy barrier of CO2 to CH4 . Moreover, the lower oxidation states of Ni in LDH-S2 enhances the adsorption of intermediates such as OCOH* and *CO, promoting the hydrogenation of CO to CH4 . Therefore, the coupling effect of both lattice strain and electronic structure of the LDH-S2 significantly improves the activity and selectivity for CO2 PR.

11.
Small ; 19(21): e2300581, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823447

RESUMO

Electrocatalytic reduction of CO2 to high-value-added chemicals provides a feasible path for global carbon balance. Herein, the fabrication of NiNP x @NiSA y -NG (x,y = 1, 2, 3; NG = nitrogen-doped graphite) is reported, in which Ni single atom sites (NiSA ) and Ni nanoparticles (NiNP ) coexist. These NiNP x @NiSA y -NG presented a volcano-like trend for maximum CO Faradaic efficiency (FECO ) with the highest point at NiNP2 @NiSA2 -NG in CO2 RR. NiNP2 @NiSA2 -NG exhibited ≈98% of maximum FECO and a large current density of -264 mA cm-2 at -0.98 V (vs. RHE) in the flow cell. In situ experiment and density functional theory (DFT) calculations confirmed that the proper content of NiSA and NiNP balanced kinetic between proton-feeding and CO2 hydrogenation. The NiNP in NiNP2 @NiSA2 -NG promoted the formation of H* and reduced the energy barrier of *CO2 hydrogenation to *COOH, and CO desorption can be efficiently facilitated by NiSA sites, thereby resulting in enhanced CO2 RR performance.

12.
Small ; 19(24): e2207315, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929209

RESUMO

Polyoxometalates (POMs) are widely used in catalysis, energy storage, biomedicine, and other research fields due to their unique acidity, photothermal, and redox features. However, the leaching and agglomeration problems of POMs greatly limit their practical applications. Confining POMs in a host material is an efficient tool to address the above-mentioned issues. POM@host materials have received extensive attention in recent years. They not only inherent characteristics of POMs and host, but also play a significant synergistic effect from each component. This review focuses on the recent advances in the development and applications of POM@host materials. Different types of host materials are elaborated in detail, including tubular, layered, and porous materials. Variations in the structures and properties of POMs and hosts before and after confinement are highlighted as well. In addition, an overview of applications for the representative POM@host materials in electrochemical, catalytic, and biological fields is provided. Finally, the challenges and future perspectives of POM@host composites are discussed.

13.
Small ; 19(27): e2208027, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965029

RESUMO

An electrocatalytic methanol oxidation reaction (MOR) is proposed to replace oxygen evolution reaction (OER) in water electrolysis owing to the favorable thermodynamics of MOR than OER. However, there is still a competition between the MOR and the OER when the applied potential is in the conventional OER zone. How to inhibit OER while maintaining efficient MOR is an open and challenging question, and there are few reports focusing on this thus far. Herein, by taking NiFe layered double hydroxide (LDH) as a model catalyst due to its intrinsically high catalytic activity for the OER, the perspective of inhibiting OER is shown and thus promoting MOR through a heterogenous engineering of NiFe-LDH. The engineered heterostructure comprising NiFe-LDH and in situ formed NiFe-hexylaminobenzene (NiFe-HAB) coordination polymer exhibits outstanding electrocatalytic capability for methanol oxidation to formic acid (e.g., the Faradaic efficiencies (FEs) of formate product are close to 100% at various current densities, all of which are much larger than those (53-65%) on unmodified NiFe-LDH). Mechanism studies unlock the modification of NiFe-HAB passivates the OER activity of NiFe-LDH through tailoring the free energies for element reaction steps of the OER and increasing the free energy of the rate-determining step, consequently leading to efficient MOR.

14.
Small ; 19(41): e2303420, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37312653

RESUMO

Direct and selective oxidation of benzene to phenol is a long-term goal in industry. Although great efforts have been made in homogenous catalysis, it still remains a huge challenge to drive this reaction via heterogeneous catalysts under mild conditions. Herein, a single-atom Au loaded MgAl-layered double hydroxide (Au1 -MgAl-LDH) with a well-defined structure, in which the Au single atoms are located on the top of Al3+ with Au-O4 coordination as revealed by extended x-ray-absorption fine-structure (EXAFS)and density-functional theory (DFT)calculation is reported. The photocatalytic results prove the Au1 -MgAl-LDH is capable of driving benzene oxidation reaction with O2 in water, and exhibits a high selectivity of 99% for phenol. While contrast experiment shows a ≈99% selectivity for aliphatic acid with Au nanoparticle loaded MgAl-LDH (Au-NP-MgAl-LDH). Detailed characterizations confirm that the origin of the selectivity difference can be attributed to the profound adsorption behavior of substrate benzene with Au single atoms and nanoparticles. For Au1 -MgAl-LDH, single Au-C bond is formed in benzene activation and result in the production of phenol. While for Au-NP-MgAl-LDH, multiple AuC bonds are generated in benzene activation, leading to the crack of CC bond.

15.
Eur J Nucl Med Mol Imaging ; 50(11): 3414-3424, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37316675

RESUMO

PURPOSE: The purpose of this study is to compare the ability of [68Ga]Ga-DOTA-FAPI-04 PET/CT and [18F]FDG PET/CT to stratify the malignancy and invasiveness of thymic epithelial tumours (TETs). METHODS: From April 2021 to November 2022, participants with suspected TETs confirmed by histopathology or follow-up imaging were prospectively analysed. All participants underwent [18F]FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT within 1 week. Clinical characteristics, CT features, and metabolic parameters (maximum standardized uptake value [SUVmax] and tumour-to-mediastinum ratio [TMR]) of subjects with different pathological types and stages were compared. The diagnostic capacities of [18F]FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT were compared using receiver operating characteristic (ROC) curves and McNemar's test. RESULTS: Fifty-seven participants were included. [68Ga]Ga-DOTA-FAPI-04 PET/CT was superior to [18F]FDG PET/CT in differentiating thymomas from thymic carcinomas (TCs) (AUC: 0.99 vs. 0.90, P = 0.02). Logistic regression revealed that SUVmax-FAPI (P = 0.04) was a significant predictive factor for TCs. SUVmax-FAPI and TMR-FAPI showed an excellent ability to differentiate low-risk thymomas (types A, AB, and B1), high-risk thymomas (types B2 and B3), and TCs (both P < 0.001). In thymomas, only SUVmax-FAPI (P < 0.001), TMR-FAPI (P < 0.001), and nonsmooth edges (P = 0.02) were significantly higher in the advanced-stage (Masaoka-Koga [MK] stage III/IV) group than in the early-stage group (MK stage I/II). Compared with [18F]FDG PET/CT, [68Ga]Ga-DOTA-FAPI-04 PET/CT showed significantly higher specificity (67% [46 of 69] vs. 93% [64 of 69], P < 0.001) in the detection of lymph node metastases and higher sensitivity (49% [19 of 39] vs. 97% [38 of 39], P < 0.001) in evaluating distant metastases. Both SUVmax-FAPI and TMR-FAPI were correlated with FAP expression (both r = 0.843, P < 0.001). CONCLUSION: [68Ga]Ga-DOTA-FAPI-04 PET/CT was superior to [18F]FDG PET/CT in evaluating the World Health Organization (WHO) classification, MK staging, and metastatic status of TETs. TRIAL REGISTRATION: ChiCTR2000038080, registration date 2020-09-09, https://www.chictr.org.cn/com/25/showproj.aspx?proj=61192.


Assuntos
Neoplasias Epiteliais e Glandulares , Quinolinas , Timoma , Neoplasias do Timo , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Radioisótopos de Gálio , Neoplasias do Timo/diagnóstico por imagem
16.
Chemistry ; 29(37): e202300050, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37043334

RESUMO

Layered double hydroxides (LDHs) have shown great potential as adsorbents for the removal of heavy metals. Nevertheless, how the host-guest interactions of LDHs affect the removal mechanism remains to be less explored. Herein, CO3 2- /NO3 - /SO4 2- /Cl- intercalated MgAl-LDHs with different host-guest interactions were fabricated and their removal mechanism for Cd2+ was investigated. The removal capacity increased in the order of MgAl-CO3 (127.3 mg/g)

17.
Inorg Chem ; 62(10): 4304-4313, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36847745

RESUMO

The hydroxypyridinone ligand 3,4,3-LI(1,2-HOPO) (denoted as t-HOPO) is a potential chelator agent for decorporation of in vivo actinides (An), while its coordination modes with actinides and the dynamics of the complexes (An(t-HOPO)) in aqueous phase remain unclear. Here, we report molecular dynamics simulations of the complexes with key actinides (Am3+, Cm3+, Th4+, U4+, Np4+, Pu4+) to study their coordination and dynamic behaviors. For comparison, the complexation of the ligand with a ferric ion and key lanthanides (Sm3+, Eu3+, Gd3+) was also studied. The simulations show that the nature of metal ions determines the properties of the complexes. The t-HOPO in the FeIII(t-HOPO)1- complex ion formed a compact and rigid cage to encapsulate the ferric ion, which was hexa-coordinated. Ln3+/An3+ cations were ennea-coordinated with eight ligating oxygen atoms from t-HOPO and one from an aqua ligand, and An4+ cations were deca-coordinated with a second aqua ligand. The t-HOPO shows strong affinity for metal ions (stronger for An4+ than Ln3+/An3+) benefited from its high denticity and its flexible backbone. Meanwhile, the complexes displayed different dynamic flexibilities, with the AnIV(t-HOPO) complexes more significant than the others, and in the AnIV(t-HOPO) complexes, the fluctuation of the t-HOPO ligand was highly correlated with that of the eight ligating O atoms. This is attributed to the more compact conformation of the ligand, which raises backbone tension, and the competition of the aqua ligand against the t-HOPO ligand in coordinating with the tetravalent actinides. This work enriches our understanding on the structures and conformational dynamics of the complexes of actinides with t-HOPO and is expected to benefit the design of HOPO analogues for actinide sequestering.

18.
Phys Chem Chem Phys ; 25(5): 4313-4322, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688704

RESUMO

The carbonization of iron is a very important early phenomenon in the field of heterogeneous catalysis and the petrochemical industry, but the mechanism is still controversial. In this work, the carbonization mechanism and carbonization structure of iron nanoparticles by different carbon sources (CH4, C2H6, C2H4, C2H2) were systematically investigated using the reactive molecular dynamics method. The results show that saturated alkanes are dehydrogenated while adsorbed, but unsaturated olefins and alkynes undergo bond-breaking while adsorbed. The C-H bond is more likely to break than the C-C bond. Hydrocarbons with high carbon content have a strong ability to carbonize Fe nanoparticles under the same conditions. For C2H4 and C2H2, the C atoms generated from dissociation form a large number of long carbon chains intertwined with branched chains and multiple carbon rings. The C2 species formed by C2H2 after complete dehydrogenation diffuse rapidly to the interior of the nanoparticles, releasing the surface active sites and accelerating the carbonization process. Carbon-rich iron carbides (FeCx) with different Fe/C ratios were obtained by carbonization with different carbon sources. In addition, the Fe(110) surface exhibits the strongest carburizing ability. These findings provide systematic insights into the initial stages of metal Fe carburization.

19.
Molecules ; 28(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687254

RESUMO

The separation of trivalent actinides and lanthanides is a key step in the sustainable development of nuclear energy, and it is currently mainly realized via liquid-liquid extraction techniques. The underlying mechanism is complicated and remains ambiguous, which hinders the further development of extraction. Herein, to better understand the mechanism of the extraction, the contributing factors for the extraction are discussed (specifically, the sulfur-donating ligand, Cyanex301) by combing molecular dynamics simulations and experiments. This work is expected to contribute to improve our systematic understanding on a molecular scale of the extraction of lanthanides and actinides, and to assist in the extensive studies on the design and optimization of novel ligands with improved performance.

20.
Chimia (Aarau) ; 77(11): 733-741, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047840

RESUMO

Heavy metal contamination in soil, which is harmful to both ecosystem and mankind, has attracted worldwide attention from the academic and industrial communities. However, the most-widely used remediation technologies such as electrochemistry, elution, and phytoremediation. suffer from either secondary pollution, long cycle time or high cost. In contrast, in situ mineralization technology shows great potential due to its universality, durability and economical efficiency. As such, the development of mineralizers with both high efficiency and low-cost is the core of in situmineralization. In 2021, the concept of 'Super-Stable Mineralization' was proposed for the first time by Kong et al.[1] The layered double hydroxides (denoted as LDHs), with the unique host-guest intercalated structure and multiple interactions between the host laminate and the guest anions, are considered as an ideal class of materials for super-stable mineralization. In this review, we systematically summarize the application of LDHs in the treatment of heavy metal contaminated soil from the view of: 1) the structure-activity relationship of LDHs in in situ mineralization, 2) the advantages of LDHs in mineralizing heavy metals, 3) the scale-up preparation of LDHs-based mineralizers and 4) the practical application of LDHs in treating contaminated soil. At last, we highlight the challenges and opportunities for the rational design of LDH-based mineralizer in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA