Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069263

RESUMO

Due to the multitude of physiological functions, ferulic acid (FA) has a wide range of applications in the food, cosmetic, and pharmaceutical industries. Thus, the development of rapid, sensitive, and selective detection tools for its assay is of great interest. This study reports a new electroanalytical approach for the quantification of ferulic acid in commercial pharmaceutical samples using a sulphur-doped graphene-based electrochemical sensing platform. The few-layer graphene material (exf-SGR) was prepared by the electrochemical oxidation of graphite, at a low applied bias (5 V), in an inorganic salt mixture of Na2S2O3/(NH4)2SO4 (0.3 M each). According to the morpho-structural characterization of the material, it appears to have a high heteroatom doping degree, as proved by the presence of sulphur lines in the XRD pattern, and the C/S ratio was determined by XPS investigations to be 11.57. The electrochemical performances of a glassy carbon electrode modified with the exf-SGR toward FA detection were tested by cyclic voltammetry in both standard laboratory solutions and real sample analysis. The developed modified electrode showed a low limit of detection (30.3 nM) and excellent stability and reproducibility, proving its potential applicability as a viable solution in FA qualitative and quantitative analysis.


Assuntos
Grafite , Grafite/química , Reprodutibilidade dos Testes , Técnicas Eletroquímicas , Carbono/química , Eletrodos , Enxofre
2.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677817

RESUMO

Heavy metals represent a large category of pollutants. Heavy metals are the focus of researchers around the world, mainly due to their harmful effects on plants. In this paper, the influence of copper, cadmium, manganese, nickel, zinc and lead, present in soil in different concentrations (below the permissible limit, the maximum permissible concentration and a concentration higher than the maximum permissible limit) on lettuce (Lactuca sativa L.) was evaluated. For this purpose, the authors analyzed the variation of photosynthetic pigments, total polyphenols, antioxidant activity and the elemental content in the studied plants. The experimental results showed that the variation of the content of biologically active compounds, elemental content and the antioxidant activity in the plants grown in contaminated soil, compared to the control plants, depends on the type and concentration of the metal added to the soil. The biggest decrease was recorded for plants grown in soil treated with Ni I (-42.38%) for chlorophyll a, Zn II (-32.92%) for chlorophyll b, Ni I (-40.46%) for carotenoids, Pb I (-40.95%) for polyphenols and Cu III (-29.42%) for DPPH. On the other hand, the largest increase regarding the amount of biologically active compounds was registered for Mn I (88.24%) in the case of the chlorophyll a, Mn I (65.56%) for chlorophyll b, Pb I (116.03%) for carotenoids, Ni III (1351.23%) for polyphenols and Ni III (1149.35%) for DPPH.


Assuntos
Metais Pesados , Poluentes do Solo , Lactuca , Clorofila A , Antioxidantes/farmacologia , Chumbo , Metais Pesados/toxicidade , Metais Pesados/análise , Solo/química , Carotenoides , Poluentes do Solo/análise
3.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049821

RESUMO

Plant extracts and essential oils have a wide variety of molecules with potential application in different fields such as medicine, the food industry, and cosmetics. Furthermore, these plant derivatives are widely interested in human and animal health, including potent antitumor, antifungal, anti-inflammatory, and bactericidal activity. Given this diversity, different methodologies were needed to optimize the extraction, purification, and characterization of each class of biomolecules. In addition, these plant products can still be used in the synthesis of nanomaterials to reduce the undesirable effects of conventional synthesis routes based on hazardous/toxic chemical reagents and associate the properties of nanomaterials with those present in extracts and essential oils. Vegetable oils and extracts are chemically complex, and although they are already used in the synthesis of nanomaterials, limited studies have examined which molecules are effectively acting in the synthesis and stabilization of these nanostructures. Similarly, few studies have investigated whether the molecules coating the nanomaterials derived from these extracts and essential oils would bring benefits or somehow reduce their potential activity. This synergistic effect presents a promising field to be further explored. Thus, in this review article, we conducted a comprehensive review addressing the main groups of molecules present in plant extracts and essential oils, their extraction capacity, and available methodologies for their characterization. Moreover, we highlighted the potential of these plant products in the synthesis of different metallic nanomaterials and their antimicrobial capacity. Furthermore, we correlated the extract's role in antimicrobial activity, considering the potential synergy between molecules from the plant product and the different metallic forms associated with nanomaterials.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Óleos Voláteis , Animais , Humanos , Óleos Voláteis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óleos de Plantas/química , Anti-Infecciosos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química
4.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956785

RESUMO

Abiotic stress agents, among them metal stress, can cause oxidative damage to plant cells. In defense, plants can increase the production of secondary metabolites in order to mitigate the harmful effects caused by them. The purpose of this work was to evaluate the effect of two types of copper salts (CuSO4 and Cu(NO3)2), added in two different amounts in soil (150 mg/kg, respectively 300 mg/kg), on assimilating pigments, total polyphenols, antioxidant activity and the elemental composition of wheat. The obtained results were compared with those from control plants grown in the same conditions but without copper salts. The amount of assimilating pigments, total polyphenols, and antioxidant activity respectively increases or decreases in the plants treated with copper salts compared to the control depending on the stage of development of the plant. No significant damage induced in the leaves of the wheat plants treated with the selected salts was observed following the TEM analysis. In six-week-old plants it was observed by EDX analysis that the salts are transformed into nanoparticles. The bioactive compounds, elemental composition and their interaction is influenced by concentration of metal's salt, type of salt and exposure period.


Assuntos
Antioxidantes , Triticum , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cobre/farmacologia , Estresse Oxidativo , Raízes de Plantas/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Sais/metabolismo , Sais/farmacologia , Triticum/metabolismo
5.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268711

RESUMO

The article focuses on the optimization of the extraction process of biologically active compounds (BAC) from grape marc-a by-product of the wine industry. The influence of temperature, specifically 30 °C, 45 °C and 65 °C, and ethanol concentration in solutions, specifically 0-96% (v/v) on the extraction yield of polyphenols, flavonoids, tannins and anthocyanins, were investigated. The composition of individual polyphenols, anthocyanins and organic acids, antioxidant activity (DPPH and ABTS) and CIELab chromatic characteristics of the grape marc extracts (GME), were characterized. The microbiostatic and microbicidal effects in direct contact of GME with pathogenic microorganisms, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, were determined in vitro. The influence of extraction parameters on the total polyphenol content (TPC), total flavonoid content (TFC), tannin content (TC), total anthocyanin content (TAC) and their interdependencies were studied using information analysis. A mathematical model was developed on cubic spline functions. The analysis of individual compounds showed the presence of a wide range of flavonoids (procyanidin B2, procyanidin B1, hyperoside and quercetin), flavones (catechin), hydroxybenzoic acid derivatives (gallic, protocatechuic, p-hydroxybenzoic acids, m-hydroxybenzoic acid, syringic acid), hydroxycinic acid derivatives and ferulic acid methyl ester. The malvidol-3-glucoside was the main anthocyanin identified in the extract. A high amount of tartaric acid was also found. GME showed significant antimicrobial activity against Gram-positive bacteria and lower activity against Gram-negative bacteria.


Assuntos
Vitis , Antocianinas/química , Antioxidantes/química , Quimiometria , Flavonoides/análise , Flavonoides/farmacologia , Extratos Vegetais/química , Polifenóis/análise , Polifenóis/farmacologia , Vitis/química
6.
Molecules ; 27(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268780

RESUMO

The purpose of this study was to evaluate the sun protection factor (SPF) of cosmetic emulsions with the addition of hydroalcoholic apple extract. First, the total polyphenolic content, the antioxidant activity and SPF properties of the extracts obtained by sonication and refluxing were evaluated. The two extraction methods were improved using the central composite design. For cosmetic emulsion that contained a different concentration of apple extract (10-40%), a SPF value between 0.51 and 0.90 was obtained. The most efficient apple extract was obtained by reflux using 50% ethanol and a 60 min extraction time. The concentrated extract was incorporated in a cosmetic emulsion whose SPF maximum was 0.90. Accordingly, due to photoprotective properties, the apple extract can be a candidate for use in cosmetic formulations.


Assuntos
Malus , Fator de Proteção Solar , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia
7.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361600

RESUMO

Persistent pollutants such as pharmaceuticals, pesticides, musk fragrances, and dyes are frequently detected in different environmental compartments and negatively impact the environment and humans. Understanding the impacts of diffuse environmental pollutants on plants is still limited, especially at realistic environmental concentrations of contaminants. We studied the effects of key representatives of two major classes of environmental pollutants (nine different antibiotics and six different textile dyes) on the leaf carotenoid (violaxanthin and neoxanthin) content in wheat (Triticum aestivum L.) using different pollutant concentrations and application times. The wheat plants were watered with solutions of selected environmental pollutants in two different concentrations of 0.5 mg L-1 and 1.5 mg L-1 for one week (0.5 L) and two weeks (1 L). Both categories of pollutants selected for this study negatively influenced the content of violaxanthin and neoxanthin, whereas the textile dyes represented more severe stress to the wheat plants. The results demonstrate that chronic exposure to common diffusively spread environmental contaminants constitutes significant stress to the plants.


Assuntos
Antibacterianos/toxicidade , Corantes/toxicidade , Poluentes Ambientais/toxicidade , Folhas de Planta/metabolismo , Triticum/metabolismo , Xantofilas/metabolismo
8.
Molecules ; 26(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34771086

RESUMO

The problem of functional foods with bioactive components of natural origin is current for the food industry. Plant extracts rich in polyphenols with antioxidant and antimicrobial activity are a promising source for use in improving the quality and characteristics of fresh meat and meat products. In this context, the purpose of the present study was to evaluate the physico-chemical, microbiological, sensory properties of sausages prepared with the addition of lyophilized extract of basil, thyme or tarragon. For the beginning, the total amount of polyphenols, the antioxidant and antimicrobial activity of the extracts obtained from three spices were evaluated. In the sausages previously infected with Staphylococcus aureus and Escherichia coli it was observed that there is a much larger number of colonies of microorganisms in the control sample compared to the other samples within 24 and 48 h. Moreover, following the addition of sausage extracts, no changes were found regarding their sensory acceptability.


Assuntos
Anti-Infecciosos/farmacologia , Artemisia/química , Microbiologia de Alimentos , Produtos da Carne , Ocimum basilicum/química , Extratos Vegetais/farmacologia , Satureja/química , Anti-Infecciosos/química , Antioxidantes/química , Antioxidantes/farmacologia , Fenômenos Químicos , Microbiologia de Alimentos/métodos , Conservação de Alimentos/métodos , Conservação de Alimentos/normas , Liofilização , Produtos da Carne/microbiologia , Produtos da Carne/normas , Extratos Vegetais/química , Polifenóis/química , Polifenóis/farmacologia
9.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070017

RESUMO

Medicinal plants are often used as reducing agents to prepare metal nanoparticles through green-synthesis due to natural compounds and their potential as chemotherapeutic drugs. Thus, three types of eco-friendly Ag-MnO2 nanoparticles (Ag-MnO2NPs) were synthesized using C. majus (CmNPs), V. minor (VmNPs), and a 1:1 mixture of the two extracts (MNPs). These NPs were characterized using S/TEM, EDX, XRD, and FTIR methods, and their biological activity was assessed in vitro on normal keratinocytes (HaCaT) and skin melanoma cells (A375). All synthesized NPs had manganese oxide in the middle, and silver oxide and plant extract on the exterior. The NPs had different forms (polygonal, oval, and spherical), uniformly distributed, with crystalline structures and different sizes (9.3 nm for MNPs; 10 nm for VmNPs, and 32.4 nm for CmNPs). The best results were obtained with VmNPs, which reduced the viability of A375 cells up 38.8% and had a moderate cytotoxic effect on HaCaT (46.4%) at concentrations above 500 µg/mL. At the same concentrations, CmNPs had a rather proliferative effect, whereas MNPs negatively affected both cell lines. For the first time, this paper proved the synergistic action of the combined C. majus and V. minor extracts to form small and uniformly distributed Ag-MnO2NPs with high potential for selective treatments.


Assuntos
Chelidonium/metabolismo , Compostos de Manganês/química , Nanopartículas Metálicas/química , Óxidos/química , Extratos Vegetais/metabolismo , Prata/química , Vinca/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Compostos de Manganês/farmacologia , Óxidos/farmacologia
10.
J Food Sci Technol ; 57(2): 628-637, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32116372

RESUMO

The aim of this study was to evaluate the physico-chemical, microbiological, sensory properties and antioxidant activity of the functional cream cheese prepared with lipophilic extracts of sea buckthorn (Hippophae rhamnoides L.). The first step of the research consisted of an evaluation of the physico-chemical characteristics and the antioxidant capacity of the sea buckthorn lipophilic extracts. The sea buckthorn extracts had a significant antioxidant capacity (67.04 ± 2.67%), a content of total carotenoids of 8.27 ± 0.01 mg L-1 and a content of total polyphenols of 1842.86 ± 1.41 mg/100 g dry vegetal material. The addition of the sea buckthorn extracts did not negatively affect the fresh cream cheese's sensory characteristics. The addition of sea buckthorn extracts to the cream cheese resulted in an increase of antiradical activity and dry matter content, a decrease in acidity and higher growth inhibitition of germs.

11.
Ecotoxicology ; 28(6): 631-642, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161525

RESUMO

Understanding the effects of many essential non-steroidal anti-inflammatory drugs (NSAIDs) on plants is still limited, especially at environmentally realistic concentrations. This paper presents the influence of three of the most frequently used NSAIDs (diclofenac, ibuprofen, and naproxen) at environmentally realistic concentrations on the autochthonous green leafy vegetables: orache (Atriplex patula L.), spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa L.). Our research was focused on the determination of the photosynthetic parameters, the emission rate of volatile organic compounds, and the evaluation of the ultrastructure of leaves of studied vegetables after exposure to abiotic stress induced by environmental pollutants, namely NSAIDs. The data obtained indicate a moderate reduction of foliage physiological activity as a response to the stress induced by NSAIDs to the selected green leafy vegetables. The increase of the 3-hexenal and monoterpene emission rates with increasing NSAIDs concentration could be used as a sensitive and a rapid indicator to assess the toxicity of the NSAIDs. Microscopic analysis showed that the green leafy vegetables were affected by the selected NSAIDs. In comparison to the controls, the green leafy vegetables treated with NSAIDs presented irregular growth of glandular trichomes on the surface of the adaxial side of the leaves, less stomata, cells with less cytoplasm, irregular cell walls and randomly distributed chloroplasts. Of the three NSAIDs investigated in this study, ibuprofen presented the highest influence. The results obtained in this study can be used to better estimate the impact of drugs on the environment and to improve awareness on the importance of the responsible use of drugs.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Atriplex/efeitos dos fármacos , Poluentes Ambientais/efeitos adversos , Lactuca/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Spinacia oleracea/efeitos dos fármacos , Compostos Orgânicos Voláteis/metabolismo , Atriplex/fisiologia , Atriplex/ultraestrutura , Diclofenaco/efeitos adversos , Ibuprofeno/efeitos adversos , Lactuca/fisiologia , Lactuca/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Naproxeno/efeitos adversos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Spinacia oleracea/fisiologia , Spinacia oleracea/ultraestrutura
12.
Environ Exp Bot ; 138: 184-192, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-29367792

RESUMO

Gypsy moth (Lymantria dispar L., Lymantriinae) is a major pest of pedunculate oak (Quercus robur) forests in Europe, but how its infections scale with foliage physiological characteristics, in particular with photosynthesis rates and emissions of volatile organic compounds has not been studied. Differently from the majority of insect herbivores, large larvae of L. dispar rapidly consume leaf area, and can also bite through tough tissues, including secondary and primary leaf veins. Given the rapid and devastating feeding responses, we hypothesized that infection of Q. robur leaves by L. dispar leads to disproportionate scaling of leaf photosynthesis and constitutive isoprene emissions with damaged leaf area, and to less prominent enhancements of induced volatile release. Leaves with 0% (control) to 50% of leaf area removed by larvae were studied. Across this range of infection severity, all physiological characteristics were quantitatively correlated with the degree of damage, but all these traits changed disproportionately with the degree of damage. The net assimilation rate was reduced by almost 10-fold and constitutive isoprene emissions by more than 7-fold, whereas the emissions of green leaf volatiles, monoterpenes, methyl salicylate and the homoterpene (3E)-4,8-dimethy-1,3,7-nonatriene scaled negatively and almost linearly with net assimilation rate through damage treatments. This study demonstrates that feeding by large insect herbivores disproportionately alters photosynthetic rate and constitutive isoprene emissions. Furthermore, the leaves have a surprisingly large capacity for enhancement of induced emissions even when foliage photosynthetic function is severely impaired.

13.
Biomedicines ; 12(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927546

RESUMO

Three berberine-containing plant extracts were investigated for their pharmacological properties. The stems and leaves of Berberis vulgaris, Mahonia aquifolium, and Phellodendron amurense were characterized through scanning electron microscopy. The plant extracts obtained from fresh stem barks were further analyzed through high-performance liquid chromatography, revealing berberine concentrations, among berbamine and palmatine. The plant extracts were further tested for their anticancer potential against 2D and 3D human skin melanoma (A375) and lung adenocarcinoma (A549) cell lines. The concentrations at which 50% of the cells are affected was determined by the viability assay and it was shown that B. vulgaris, the plant extract with the highest berberine concentration, is the most efficient inhibitor (0.4% extract concentration for the 2D model and 3.8% for the 3D model). The membrane integrity and nitrate/nitrite concentration assays were consistent with the viability results and showed effective anticancer potential. For further investigations, the B. vulgaris extract was used to obtain silver nanoparticles, which were characterized through transmission electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The formed nanoparticles have a uniform size distribution and are suited for future investigations in the field of biomedical applications, together with the B. vulgaris plant extract.

14.
Antioxidants (Basel) ; 13(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39199136

RESUMO

In this paper, the qualitative and quantitative profile is evaluated of the bioactive compounds, antioxidant activity (AA), microbiostatic properties, as well as the color parameters of jostaberry extracts, obtained from frozen (FJ), freeze-dried (FDJ), and oven-dried berries (DJ). The optimal extraction conditions by ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were selected after determination of the total polyphenol content (TPC), total flavonoid content (TFC), total antocyanin content (TA), AA by 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH), and the free radical cation 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonates (ABTS). Non-conventional extraction methods are less destructive to anthocyanins, while drying the berries reduced TA, regardless of the extraction method. The oven-drying process reduced the concentration of TA in DJ extracts by 99.4% and of ascorbic acid by 92.42% compared to FJ. AA was influenced by the jostaberry pretreatment methods. The DPPH and ABTS tests recorded values (mg Trolox equivalent/g dry weight) between 17.60 and 35.26 and 35.64 and 109.17 for FJ extracts, between 7.50 and 7.96 and 45.73 and 82.22 for FDJ, as well as between 6.31 and 7.40 and 34.04 and 52.20 for DJ, respectively. The jostaberry pretreatment produced significant changes in all color parameters. Mutual information analysis, applied to determine the influence of ultrasound and microwave durations on TPC, TFC, TA, AA, pH, and color parameters in jostaberry extracts, showed the greatest influence on TA (0.367 bits) and TFC (0.329 bits). The DPPH and ABTS inhibition capacity of all FJ' extracts had higher values and varied more strongly, depending on pH, heat treatment, and storage time, compared to the AA values of FDJ' and DJ' extracts. A significant antimicrobial effect was observed on all bacterial strains studied for FJP. FDJP was more active on Bacillus cereus, Staphylococcus aureus, and Escherichia coli. DJP was more active on Salmonella Abony and Pseudomonas aeruginosa. The antifungal effect of DJP was stronger compared to FDJP. Jostaberry extracts obtained under different conditions can be used in food production, offering a wide spectrum of red hues.

15.
Antibiotics (Basel) ; 13(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39200080

RESUMO

This study evaluates antibiotic residues and bacterial loads in influent and effluent samples from three wastewater treatment plants (WWTPs) in Romania, across four seasons from 2021 to 2022. Analytical methods included solid-phase extraction and high-performance liquid chromatography (HPLC) to quantify antibiotic concentrations, while microbiological assays estimated bacterial loads and assessed antibiotic resistance patterns. Statistical analyses explored the impact of environmental factors such as temperature and rainfall on antibiotic levels. The results showed significant seasonal variations, with higher antibiotic concentrations in warmer seasons. Antibiotic removal efficiency varied among WWTPs, with some antibiotics being effectively removed and others persisting in the effluent, posing high environmental risks and potential for antibiotic resistance development. Bacterial loads were higher in spring and summer, correlating with increased temperatures. Eight bacterial strains were isolated, with higher resistance during warmer seasons, particularly to amoxicillin and clarithromycin.

16.
Nanomaterials (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38063738

RESUMO

A novel nanoporous adsorbent was obtained through the thermal treatment and chemical wash of the wasted crab shells (BC1) and characterized by various techniques. The structure of BC1 at the end of the treatments comprised a mixture of calcite and amorphous CaCO3, as evidenced by X-ray diffraction and Fourier transform infrared absorption. The BET surface area, BET pore volume, and pore diameter were 250.33 m2 g-1, 0.4 cm3 g-1, and <70 nm, respectively. The point of zero charge of BC1 was determined to be around pH 9. The prepared adsorbent was tested for its adsorption efficacy towards the neonicotinoid pesticide acetamiprid. The influence of pH (2-10), temperature (20-45 °C), adsorbent dose (0.2-1.2 g L-1), contact time (5-60 min), and initial pesticide concentration (10-60 mg L-1) on the adsorption process of acetamiprid on BC1 was studied. The adsorption capacity of BC1 was 17.8 mg g-1 under optimum conditions (i.e., 20 mg L-1 initial acetamiprid concentration, pH 8, 1 g L-1 adsorbent dose, 25 °C, and 15 min contact time). The equilibrium data obtained from the adsorption experiment fitted well with the Langmuir isotherm model. We developed an effective nanoporous adsorbent for the recycling of crab shells which can be applied on site with minimal laboratory infrastructure according to local needs.

17.
Gels ; 9(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37998991

RESUMO

Our study aimed to investigate the biological effects of a common-plantain (Plantago major L.) extract, encapsulated in alginate, on dermal human fibroblast cultures in vitro, in view of its potential use as a wound healing adjuvant therapy. Common-plantain extracts were obtained by infusion and ultrasound extraction, and their total polyphenolic content and antioxidant capacity were determined by spectrophotometry. The best extract, which was obtained by infusion, was further encapsulated in sodium alginate in two different formulations. Fourier Transform Infrared Spectroscopy (FTIR) was used to demonstrate the existing interactions in the obtained common-plantain extract in the alginate formulations. The encapsulation efficiency was evaluated based on the total polyphenol content. These alginate gel formulations were further used in vitro to determine their biocompatibility and antioxidant and anti-inflammatory effects by spectrophotometry and ELISA, as well as their ability to stimulate fibroblast migration (scratch test assay) at different time points. In addition, the collagen 1 and 3 levels were determined by Western blot analysis. The data showed that the microencapsulated plantain extract formulations induced an antioxidant, anti-inflammatory effect, enhanced collagen production and increased wound closure in the first 8 h of their application. These results are encouraging for the use of this alginate plantain extract formulation as an adjuvant for skin wound healing.

18.
Metabolites ; 13(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132853

RESUMO

While heavy metals (HM) have been considered in recent decades to be the most common and problematic pollutants, the expansion of the list of pollutants due to the active use of carbon nanotubes (CNT) raises new questions about the benefit and harm of HM released to nature individually or fixed on CNT walls. A pot experiment was conducted to compare the effect of two classes of potential pollutants-metal salts of Pb, Mn, Cu, Zn, Cd, and Ni; and functionalized CNTs with COOH, MnO2, Fe3O4, and MnO2-Fe3O4-applied in soil, on the elemental transfer, the bioactive compounds accumulation, and the antioxidant activity in lettuce. While CNTs mainly increased the elemental transfer from soil to leaves, HM salts strongly obstructed it. In the presence of CNTs, the antioxidant activity in lettuce leaves correlated with the transfer of elements from soil to root and from root to leaves. The excess of HMs in soil induced a greater variation of the polyphenols quantity and antioxidant activity than the excess of CNTs. It might be assumed that lettuce perceived HMs as a more aggressive stressor than CNTs and more strongly activated the defense mechanism, showing the reduction of the element transfer and enhancing of total polyphenol production and antioxidant activity.

19.
Plants (Basel) ; 12(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37653877

RESUMO

The aim of this work was to evaluate the effect of six nanomaterials, namely CNT-COOH, CNT-MnO2, CNT-Fe3O4, CNT-MnO2-Fe3O4, MnO2, and Fe3O4 on lettuceTo determine the impact of nanomaterials on lettuce, the results obtained were compared with those for the control plant, grown in the same conditions of light, temperature, and humidity but without the addition of nanomaterial. The study found that the content of bioactive compounds and the antioxidant capacity varied in the treated plants compared to the control ones, depending on the nanomaterial. The use of CNTs functionalized with metal oxides increases the elemental concentration of lettuce leaves for the majority of the elements. On the contrary, metal oxide nanoparticles and CNT functionalized with carboxyl groups induce a decrease in the concentration of many elements. Soil amending with MnO2 affects the content of more than ten elements in leaves. Simultaneous application of CNT and MnO2 stimulates the elemental translocation of all elements from roots to leaves, but the simultaneous use of CNT and Fe3O4 leads to the most intense translocation compared to the control other than Mo.

20.
Antioxidants (Basel) ; 12(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37107268

RESUMO

The article investigated the antioxidant and antimicrobial activity of extracts from two aromatic plants-Satureja hortensis L. (SE) and Rosmarinus officinalis L. (RE), encapsulated in alginate, on-yogurt properties. The encapsulation efficiency was controlled by FTIR and SEM analysis. In both extracts, the individual polyphenol content was determined by HPLC-DAD-ESI-MS. The total polyphenol content and the antioxidant activity were spectrophotometrically quantified. The antimicrobial properties of SE and RE against gram-positive bacteria (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Geobacillus stearothermophilus), gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Salmonella abony) and yeasts (Candida albicans) were analyzed in vitro. The encapsulated extracts were used to prepare the functional concentrated yogurt. It was established that the addition of 0.30-0.45% microencapsulated plant extracts caused the inhibition of the post-fermentation process, the improvement of the textural parameters of the yogurt during storage, thus the shelf life of the yogurt increased by seven days, compared to the yogurt simple. Mutual information analysis was applied to establish the correlation between the concentration of the encapsulated extracts on the sensory, physical-chemical, and textural characteristics of the yogurt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA