Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(12): 7245-7260, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676950

RESUMO

Spliced leader trans-splicing of pre-mRNAs is a critical step in the gene expression of many eukaryotes. How the spliced leader RNA and its target transcripts are brought together to form the trans-spliceosome remains an important unanswered question. Using immunoprecipitation followed by protein analysis via mass spectrometry and RIP-Seq, we show that the nematode-specific proteins, SNA-3 and SUT-1, form a complex with a set of enigmatic non-coding RNAs, the SmY RNAs. Our work redefines the SmY snRNP and shows for the first time that it is essential for nematode viability and is involved in spliced leader trans-splicing. SNA-3 and SUT-1 are associated with the 5' ends of most, if not all, nascent capped RNA polymerase II transcripts, and they also interact with components of the major nematode spliced leader (SL1) snRNP. We show that depletion of SNA-3 impairs the co-immunoprecipitation between one of the SL1 snRNP components, SNA-2, and several core spliceosomal proteins. We thus propose that the SmY snRNP recruits the SL1 snRNP to the 5' ends of nascent pre-mRNAs, an instrumental step in the assembly of the trans-spliceosome.


Assuntos
Precursores de RNA , RNA Líder para Processamento , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Animais , RNA Líder para Processamento/metabolismo , RNA Líder para Processamento/genética , Precursores de RNA/metabolismo , Precursores de RNA/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/metabolismo , Spliceossomos/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Trans-Splicing , Ligação Proteica
2.
Nucleic Acids Res ; 50(13): 7591-7607, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35736244

RESUMO

Spliced leader trans-splicing is essential for gene expression in many eukaryotes. To elucidate the molecular mechanism of this process, we characterise the molecules associated with the Caenorhabditis elegans major spliced leader snRNP (SL1 snRNP), which donates the spliced leader that replaces the 5' untranslated region of most pre-mRNAs. Using a GFP-tagged version of the SL1 snRNP protein SNA-1 created by CRISPR-mediated genome engineering, we immunoprecipitate and identify RNAs and protein components by RIP-Seq and mass spectrometry. This reveals the composition of the SL1 snRNP and identifies associations with spliceosome components PRP-8 and PRP-19. Significantly, we identify a novel, nematode-specific protein required for SL1 trans-splicing, which we designate SNA-3. SNA-3 is an essential, nuclear protein with three NADAR domains whose function is unknown. Mutation of key residues in NADAR domains inactivates the protein, indicating that domain function is required for activity. SNA-3 interacts with the CBC-ARS2 complex and other factors involved in RNA metabolism, including SUT-1 protein, through RNA or protein-mediated contacts revealed by yeast two-hybrid assays, localisation studies and immunoprecipitations. Our data are compatible with a role for SNA-3 in coordinating trans-splicing with target pre-mRNA transcription or in the processing of the Y-branch product of the trans-splicing reaction.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas Nucleares , RNA de Helmintos , RNA Líder para Processamento , Trans-Splicing , Animais , Regiões 5' não Traduzidas , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Splicing de RNA , RNA de Helmintos/genética , RNA Líder para Processamento/genética
3.
PLoS One ; 19(2): e0290052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422016

RESUMO

Many commensal gut microbes are recognized for their potential to synthesize vitamin B12, offering a promising avenue to address deficiencies through probiotic supplementation. While bioinformatics tools aid in predicting B12 biosynthetic potential, empirical validation remains crucial to confirm production, identify cobalamin vitamers, and establish biosynthetic yields. This study investigates vitamin B12 production in three human colonic bacterial species: Anaerobutyricum hallii DSM 3353, Roseburia faecis DSM 16840, and Anaerostipes caccae DSM 14662, along with Propionibacterium freudenreichii DSM 4902 as a positive control. These strains were selected for their potential use as probiotics, based on speculated B12 production from prior bioinformatic analyses. Cultures were grown in M2GSC, chemically defined media (CDM), and Gorse extract medium (GEM). The composition of GEM was similar to CDM, except that the carbon and nitrogen sources were replaced with the protein-depleted liquid waste obtained after subjecting Gorse to a leaf protein extraction process. B12 yields were quantified using liquid chromatography with tandem mass spectrometry. The results suggested that the three butyrate-producing strains could indeed produce B12, although the yields were notably low and were detected only in the cell lysates. Furthermore, B12 production was higher in GEM compared to M2GSC medium. The positive control, P. freudenreichii DSM 4902 produced B12 at concentrations ranging from 7 ng mL-1 to 12 ng mL-1. Univariate-scaled Principal Component Analysis (PCA) of data from previous publications investigating B12 production in P. freudenreichii revealed that B12 yields diminished when the carbon source concentration was ≤30 g L-1. In conclusion, the protein-depleted wastes from the leaf protein extraction process from Gorse can be valorised as a viable substrate for culturing B12-producing colonic gut microbes. Furthermore, this is the first report attesting to the ability of A. hallii, R. faecis, and A. caccae to produce B12. However, these microbes seem unsuitable for industrial applications owing to low B12 yields.


Assuntos
Microbioma Gastrointestinal , Ulex , Humanos , Vitamina B 12 , Benzimidazóis , Carbono , Suplementos Nutricionais
4.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665271

RESUMO

We investigated the requirement of 15 human butyrate-producing gut bacterial strains for eight B vitamins and the proteinogenic amino acids by a combination of genome sequence analysis and in vitro growth experiments. The Ruminococcaceae species Faecalibacterium prausnitzii and Subdoligranulum variabile were auxotrophic for most of the vitamins and the amino acid tryptophan. Within the Lachnospiraceae, most species were prototrophic for all amino acids and several vitamins, but biotin auxotrophy was widespread. In addition, most of the strains belonging to Eubacterium rectale and Roseburia spp., but few of the other Lachnospiraceae strains, were auxotrophic for thiamine and folate. Synthetic coculture experiments of five thiamine or folate auxotrophic strains with different prototrophic bacteria in the absence and presence of different vitamin concentrations were carried out. This demonstrated that cross-feeding between bacteria does take place and revealed differences in cross-feeding efficiency between prototrophic strains. Vitamin-independent growth stimulation in coculture compared to monococulture was also observed, in particular for F. prausnitzii A2-165, suggesting that it benefits from the provision of other growth factors from community members. The presence of multiple vitamin auxotrophies in the most abundant butyrate-producing Firmicutes species found in the healthy human colon indicates that these bacteria depend upon vitamins supplied from the diet or via cross-feeding from other members of the microbial community.IMPORTANCE Microbes in the intestinal tract have a strong influence on human health. Their fermentation of dietary nondigestible carbohydrates leads to the formation of health-promoting short-chain fatty acids, including butyrate, which is the main fuel for the colonic wall and has anticarcinogenic and anti-inflammatory properties. A good understanding of the growth requirements of butyrate-producing bacteria is important for the development of efficient strategies to promote these microbes in the gut, especially in cases where their abundance is altered. The demonstration of the inability of several dominant butyrate producers to grow in the absence of certain vitamins confirms the results of previous in silico analyses. Furthermore, establishing that strains prototrophic for thiamine or folate (butyrate producers and non-butyrate producers) were able to stimulate growth and affect the composition of auxotrophic synthetic communities suggests that the provision of prototrophic bacteria that are efficient cross feeders may stimulate butyrate-producing bacteria under certain in vivo conditions.


Assuntos
Bactérias/genética , Butiratos/metabolismo , Fermentação , Microbiota , Vitaminas/biossíntese , Bactérias/metabolismo , Clostridiales/genética , Clostridiales/fisiologia , Colo/microbiologia , Faecalibacterium prausnitzii/genética , Faecalibacterium prausnitzii/fisiologia , Humanos , Ruminococcus/genética , Ruminococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA