Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(7): 1125-1142, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36732073

RESUMO

At high levels, extracellular ATP operates as a "danger" molecule under pathologic conditions through purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Its endogenous activation is associated with neurodevelopmental disorders; however, its function during early embryonic stages remains largely unclear. Our objective was to determine the role of P2X7R in the regulation of neuronal outgrowth. For this purpose, we performed Sholl analysis of dendritic branches on primary hippocampal neurons and in acute hippocampal slices from WT mice and mice with genetic deficiency or pharmacological blockade of P2X7R. Because abnormal dendritic branching is a hallmark of certain neurodevelopmental disorders, such as schizophrenia, a model of maternal immune activation (MIA)-induced schizophrenia, was used for further morphologic investigations. Subsequently, we studied MIA-induced behavioral deficits in young adult mice females and males. Genetic deficiency or pharmacological blockade of P2X7R led to branching deficits under physiological conditions. Moreover, pathologic activation of the receptor led to deficits in dendritic outgrowth on primary neurons from WT mice but not those from P2X7R KO mice exposed to MIA. Likewise, only MIA-exposed WT mice displayed schizophrenia-like behavioral and cognitive deficits. Therefore, we conclude that P2X7R has different roles in the development of hippocampal dendritic arborization under physiological and pathologic conditions.SIGNIFICANCE STATEMENT Our main finding is a novel role for P2X7R in neuronal branching in the early stages of development under physiological conditions. We show how a decrease in the expression of P2X7R during brain development causes the receptor to play pathologic roles in adulthood. Moreover, we studied a neurodevelopmental model of schizophrenia and found that, at higher ATP concentrations, endogenous activation of P2X7R is necessary and sufficient for the development of positive and cognitive symptoms.


Assuntos
Neurônios , Receptores Purinérgicos P2X7 , Animais , Feminino , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X7/genética , Dendritos
2.
Respir Res ; 25(1): 61, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281036

RESUMO

BACKGROUND: Peripheral blood oxygen monitoring via chemoreceptors in the carotid body (CB) is an integral function of the autonomic cardiorespiratory regulation. The presence of the purinergic P2Y12 receptor (P2Y12R) has been implicated in CB; however, the exact role of the receptor in O2 sensing and signal transduction is unknown. METHODS: The presence of P2Y12R was established by immunoblotting, RT qPCR and immunohistochemistry. Primary glomus cells were used to assess P2Y12R function during hypoxia and hypercapnia, where monoamines were measured by HPLC; calcium signal was recorded utilizing OGB-1 and N-STORM Super-Resolution System. Ingravescent hypoxia model was tested in anaesthetized mice of mixed gender and cardiorespiratory parameters were recorded in control and receptor-deficient or drug-treated experimental animals. RESULTS: Initially, the expression of P2Y12R in adult murine CB was confirmed. Hypoxia induced a P2Y12R-dependent release of monoamine transmitters from isolated CB cells. Receptor activation with the endogenous ligand ADP promoted release of neurotransmitters under normoxic conditions, while blockade disrupted the amplitude and duration of the intracellular calcium concentration. In anaesthetised mice, blockade of P2Y12R expressed in the CB abrogated the initiation of compensatory cardiorespiratory changes in hypoxic environment, while centrally inhibited receptors (i.e. microglial receptors) or receptor-deficiency induced by platelet depletion had limited influence on the physiological adjustment to hypoxia. CONCLUSIONS: Peripheral P2Y12R inhibition interfere with the complex mechanisms of acute oxygen sensing by influencing the calcium signalling and the release of neurotransmitter molecules to evoke compensatory response to hypoxia. Prospectively, the irreversible blockade of glomic receptors by anti-platelet drugs targeting P2Y12Rs, propose a potential, formerly unrecognized side-effect to anti-platelet medications in patients with pulmonary morbidities.


Assuntos
Corpo Carotídeo , Humanos , Camundongos , Animais , Corpo Carotídeo/metabolismo , Oxigênio , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Cálcio/metabolismo , Hipóxia/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255938

RESUMO

Both early childhood traumatic experiences and current stress increase the risk of suicidal behaviour, in which immune activation might play a role. Previous research suggests an association between mood disorders and P2RX7 gene encoding P2X7 receptors, which stimulate neuroinflammation. We investigated the effect of P2RX7 variation in interaction with early childhood adversities and traumas and recent stressors on lifetime suicide attempts and current suicide risk markers. Overall, 1644 participants completed questionnaires assessing childhood adversities, recent negative life events, and provided information about previous suicide attempts and current suicide risk-related markers, including thoughts of ending their life, death, and hopelessness. Subjects were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into logistic and linear regression models, followed by a clumping procedure to identify clumps of SNPs with a significant main and interaction effect. We identified two significant clumps with a main effect on current suicidal ideation with top SNPs rs641940 and rs1653613. In interaction with childhood trauma, we identified a clump with top SNP psy_rs11615992 and another clump on hopelessness containing rs78473339 as index SNP. Our results suggest that P2RX7 variation may mediate the effect of early childhood adversities and traumas on later emergence of suicide risk.


Assuntos
Experiências Adversas da Infância , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7 , Pré-Escolar , Humanos , Afeto , Genótipo , Doenças Neuroinflamatórias/genética , Receptores Purinérgicos P2X7/genética , Ideação Suicida
4.
Int J Neuropsychopharmacol ; 25(8): 645-659, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35443035

RESUMO

BACKGROUND: Immunological markers and related signaling molecules in the blood are altered in schizophrenia mouse models, in acutely relapsed patients with schizophrenia, and in persons at a clinically high risk for subsequently developing psychosis, highlighting their potential as prognostic and theranostic biomarkers. Therefore, we herein aimed to identify novel potential biomarkers in the serum that are associated with purinergic signaling. METHODS: To our knowledge, this is the first study to assess the correlations among the levels of human serum adenine nucleotides (ATP, ADP), adenosine, P2X7 receptor, and disease activity in patients hospitalized due to an acute relapse of schizophrenia (n = 53) and healthy controls (n = 47). In addition, to validate these findings using a reverse translational approach, we examined the same parameters in an acute phencyclidine-induced schizophrenia mouse model. RESULTS: We found consistently elevated levels of ATP, ADP, interleukin (IL)-6, and IL-10 in both schizophrenia groups compared with the controls. The levels of adenosine, IL-1ß, IL-12, and C-reactive protein were also increased in the human patient samples. Moreover, ATP and ADP were significantly positively correlated with the Positive and Negative Symptom Scale item "lack of judgment and insight"; IL-1ß, IL-12, and tumour necrosis factor alpha were significantly positively correlated with "tension" and "depression"; and "disorientation" and "poor attention" were correlated significantly with IL-6 and IL-8. CONCLUSIONS: Our study suggests the promising potential of blood purines and inflammatory markers as future prognostic tools.


Assuntos
Esquizofrenia , Adenosina , Difosfato de Adenosina , Trifosfato de Adenosina/farmacologia , Biomarcadores , Humanos , Interleucina-12 , Interleucina-1beta , Interleucina-6 , Purinas
5.
Brain Behav Immun ; 101: 318-332, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065198

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition caused by interactions of environmental and genetic factors. Recently we showed that activation of the purinergic P2X7 receptors is necessary and sufficient to convert maternal immune activation (MIA) to ASD-like features in male offspring mice. Our aim was to further substantiate these findings and identify downstream signaling pathways coupled to P2X7 upon MIA. Maternal treatment with the NLRP3 antagonist MCC950 and a neutralising IL-1ß antibody during pregnancy counteracted the development of autistic characteristics in offspring mice. We also explored time-dependent changes of a widespread cytokine and chemokine profile in maternal blood and fetal brain samples of poly(I:C)/saline-treated dams. MIA-induced increases in plasma IL-1ß, RANTES, MCP-1, and fetal brain IL-1ß, IL-2, IL-6, MCP-1 concentrations are regulated by the P2X7/NLRP3 pathway. Offspring treatment with the selective P2X7 receptor antagonist JNJ47965567 was effective in the prevention of autism-like behavior in mice using a repeated dosing protocol. Our results highlight that in addition to P2X7, NLRP3, as well as inflammatory cytokines, may also be potential biomarkers and therapeutic targets of social deficits and repetitive behaviors observed in autism spectrum disorder.


Assuntos
Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Receptores Purinérgicos P2X7 , Animais , Transtorno Autístico/genética , Comportamento Animal , Citocinas , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fenótipo , Gravidez , Receptores Purinérgicos P2X7/genética
6.
Neurochem Res ; 47(11): 3272-3284, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35945308

RESUMO

Phenylephrine (PE) is a canonical α1-adrenoceptor-selective agonist. However, unexpected effects of PE have been observed in preclinical and clinical studies, that cannot be easily explained by its actions on α1-adrenoceptors. The probability of the involvement of α2- and ß-adrenoceptors in the effect of PE has been raised. In addition, our earlier study observed that PE released noradrenaline (NA) in a [Ca2+]o-independent manner. To elucidate this issue, we have investigated the effects of PE on [3H]NA release and α1-mediated smooth muscle contractions in the mouse vas deferens (MVD) as ex vivo preparation. The release experiments were designed to assess the effects of PE at the presynaptic terminal, whereas smooth muscle isometric contractions in response to electrical field stimulation were used to measure PE effect postsynaptically. Our results show that PE at concentrations between 0.3 and 30 µM significantly enhanced the resting release of [3H]NA in a [Ca2+]o-independent manner. In addition, prazosin did not affect the release of NA evoked by PE. On the contrary, PE-evoked smooth muscle contractions were inhibited by prazosin administration indicating the α1-adrenoceptor-mediated effect. When the function of the NA transporter (NAT) was attenuated with nisoxetine, PE failed to release NA and the contractions were reduced by approximately 88%. The remaining part proved to be prazosin-sensitive. The present work supports the substantial indirect effect of PE which relays on the cytoplasmic release of NA, which might explain the reported side effects for PE.


Assuntos
Antagonistas Adrenérgicos alfa , Norepinefrina , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Citoplasma , Masculino , Camundongos , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Prazosina/farmacologia , Receptores Adrenérgicos alfa 1
7.
Pharmacol Res ; 176: 106045, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968684

RESUMO

Parkinson's disease (PD) is a chronic, progressive neurodegenerative condition; characterized with the degeneration of the nigrostriatal dopaminergic pathway and neuroinflammation. During PD progression, microglia, the resident immune cells in the central nervous system (CNS) display altered activity, but their role in maintaining PD development has remained unclear to date. The purinergic P2Y12-receptor (P2Y12R), which is expressed on the microglia in the CNS has been shown to regulate microglial activity and responses; however, the function of the P2Y12R in PD is unknown. Here we show that MPTP-induced PD symptoms in mice are associated with marked neuroinflammatory changes and P2Y12R contribute to the activation of microglia and progression of the disease. Surprisingly, while pharmacological or genetic targeting of the P2Y12R augments acute mortality in MPTP-treated mice, these interventions protect against the neurodegenerative cell loss and the development of neuroinflammation in vivo. Pharmacological inhibition of receptors during disease development reverses the symptoms of PD and halts disease progression. We found that P2Y12R regulates ROCK and p38 MAPK activity and control cytokine production. Our principal finding is that the receptor has a dualistic role in PD: functional P2Y12Rs are essential to initiate a protective inflammatory response, since the lack of the receptor leads to reduced survival; however, at later stages of neurodegeneration, P2Y12Rs are apparently responsible for maintaining the activated state of microglia and stimulating pro-inflammatory cytokine response. Understanding protective and detrimental P2Y12R-mediated actions in the CNS may reveal novel approaches to control neuroinflammation and modify disease progression in PD.


Assuntos
Transtornos Parkinsonianos/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/genética , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases Associadas a rho/metabolismo
8.
J Neurosci ; 40(7): 1453-1482, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31896673

RESUMO

During adult hippocampal neurogenesis, most newborn cells undergo apoptosis and are rapidly phagocytosed by resident microglia to prevent the spillover of intracellular contents. Here, we propose that phagocytosis is not merely passive corpse removal but has an active role in maintaining neurogenesis. First, we found that neurogenesis was disrupted in male and female mice chronically deficient for two phagocytosis pathways: the purinergic receptor P2Y12, and the tyrosine kinases of the TAM family Mer tyrosine kinase (MerTK)/Axl. In contrast, neurogenesis was transiently increased in mice in which MerTK expression was conditionally downregulated. Next, we performed a transcriptomic analysis of the changes induced by phagocytosis in microglia in vitro and identified genes involved in metabolism, chromatin remodeling, and neurogenesis-related functions. Finally, we discovered that the secretome of phagocytic microglia limits the production of new neurons both in vivo and in vitro Our data suggest that microglia act as a sensor of local cell death, modulating the balance between proliferation and survival in the neurogenic niche through the phagocytosis secretome, thereby supporting the long-term maintenance of adult hippocampal neurogenesis.SIGNIFICANCE STATEMENT Microglia are the brain professional phagocytes and, in the adult hippocampal neurogenic niche, they remove newborn cells naturally undergoing apoptosis. Here we show that phagocytosis of apoptotic cells triggers a coordinated transcriptional program that alters their secretome, limiting neurogenesis both in vivo and in vitro In addition, chronic phagocytosis disruption in mice deficient for receptors P2Y12 and MerTK/Axl reduces adult hippocampal neurogenesis. In contrast, inducible MerTK downregulation transiently increases neurogenesis, suggesting that microglial phagocytosis provides a negative feedback loop that is necessary for the long-term maintenance of adult hippocampal neurogenesis. Therefore, we speculate that the effects of promoting engulfment/degradation of cell debris may go beyond merely removing corpses to actively promoting regeneration in development, aging, and neurodegenerative diseases.


Assuntos
Hipocampo/citologia , Neurogênese/fisiologia , Neurônios/citologia , Fagocitose/fisiologia , Animais , Apoptose , Sinalização do Cálcio , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Meios de Cultivo Condicionados , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Purinérgicos P2Y12/fisiologia , Transcriptoma , c-Mer Tirosina Quinase/fisiologia
9.
J Neurosci ; 39(13): 2542-2561, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30683682

RESUMO

Maternal immune activation (MIA) is a principal environmental risk factor contributing to autism spectrum disorder (ASD), which compromises fetal brain development at critical periods of pregnancy and might be causally linked to ASD symptoms. We report that endogenous activation of the purinergic ion channel P2X7 (P2rx7) is necessary and sufficient to transduce MIA to autistic phenotype in male offspring. MIA induced by poly(I:C) injections to P2rx7 WT mouse dams elicited an autism-like phenotype in their offspring, and these alterations were not observed in P2rx7-deficient mice, or following maternal treatment with a specific P2rx7 antagonist, JNJ47965567. Genetic deletion and pharmacological inhibition of maternal P2rx7s also counteracted the induction of IL-6 in the maternal plasma and fetal brain, and disrupted brain development, whereas postnatal P2rx7 inhibition alleviated behavioral and morphological alterations in the offspring. Administration of ATP to P2rx7 WT dams also evoked autistic phenotype, but not in KO dams, implying that P2rx7 activation by ATP is sufficient to induce autism-like features in offspring. Our results point to maternal and offspring P2rx7s as potential therapeutic targets for the early prevention and treatment of ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental psychiatric disorder caused by genetic and environmental factors. Recent studies highlighted the importance of perinatal risks, in particular, maternal immune activation (MIA), showing strong association with the later emergence of ASD in the affected children. MIA could be mimicked in animal models via injection of a nonpathogenic agent poly(I:C) during pregnancy. This is the first report showing the key role of a ligand gated ion channel, the purinergic P2X7 receptor in MIA-induced autism-like behavioral and biochemical features. We show that genetic or pharmacological inhibition of both maternal and offspring P2X7 receptors could reverse the compromised brain development and autistic phenotype pointing to new possibilities for prevention and treatment of ASD.


Assuntos
Transtorno do Espectro Autista/imunologia , Receptores Purinérgicos P2X7/imunologia , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/patologia , Cerebelo/ultraestrutura , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Receptores Purinérgicos P2X7/genética
10.
Neurochem Res ; 44(10): 2413-2422, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31054067

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by progressive loss of dopaminergic neurons that results in characteristic motor and non-motor symptoms. L-3,4 dihydroxyphenylalanine (L-DOPA) is the gold standard therapy for the treatment of PD. However, long-term use of L-DOPA leads to side effects such as dyskinesias and motor fluctuation. Since purines have neurotransmitter and co-transmitter properties, the function of the purinergic system has been thoroughly studied in the nervous system. Adenosine and adenosine 5'-triphosphate (ATP) are modulators of dopaminergic neurotransmission, neuroinflammatory processes, oxidative stress, excitotoxicity and cell death via purinergic receptor subtypes. Aberrant purinergic receptor signalling can be either the cause or the result of numerous pathological conditions, including neurodegenerative disorders. Many data confirm the involvement of purinergic signalling pathways in PD. Modulation of purinergic receptor subtypes, the activity of ectonucleotidases and ATP transporters could be beneficial in the treatment of PD. We give a brief summary of the background of purinergic signalling focusing on its roles in PD. Possible targets for pharmacological treatment are highlighted.


Assuntos
Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Receptores Purinérgicos/metabolismo , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Sistema Nervoso/metabolismo
11.
Acta Neuropathol ; 136(3): 461-482, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30027450

RESUMO

Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection.


Assuntos
Encéfalo/metabolismo , Infecções por Herpesviridae/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Transdução de Sinais/fisiologia , Animais , Encéfalo/virologia , Camundongos , Microglia/virologia , Neurônios/metabolismo , Neurônios/virologia
12.
Int J Neuropsychopharmacol ; 20(10): 813-822, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633291

RESUMO

Background: Major depressive disorder is characterized by structural and functional abnormalities of cortical and limbic brain areas, including a decrease in spine synapse number in the dentate gyrus of the hippocampus. Recent studies highlighted that both genetic and pharmacological invalidation of the purinergic P2X7 receptor (P2rx7) leads to antidepressant-like phenotype in animal experiments; however, the impact of P2rx7 on depression-related structural changes in the hippocampus is not clarified yet. Methods: Effects of genetic deletion of P2rx7s on depressive-like behavior and spine synapse density in the dentate gyrus were investigated using the learned helplessness mouse model of depression. Results: We demonstrate that in wild-type animals, inescapable footshocks lead to learned helplessness behavior reflected in increased latency and number of escape failures to subsequent escapable footshocks. This behavior is accompanied with downregulation of mRNA encoding P2rx7 and decrease of spine synapse density in the dentate gyrus as determined by electron microscopic stereology. In addition, a decrease in synaptopodin but not in PSD95 and NR2B/GluN2B protein level was also observed under these conditions. Whereas the absence of P2rx7 was characterized by escape deficit, no learned helpless behavior is observed in these animals. Likewise, no decrease in spine synapse number and synaptopodin protein levels was detected in response to inescapable footshocks in P2rx7-deficient animals. Conclusion: Our findings suggest the endogenous activation of P2rx7s in the learned helplessness model of depression and decreased plasticity of spine synapses in P2rx7-deficient mice might explain the resistance of these animals to repeated stressful stimuli.


Assuntos
Espinhas Dendríticas/metabolismo , Giro Denteado/metabolismo , Transtorno Depressivo Maior/metabolismo , Plasticidade Neuronal/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Sinapses/metabolismo , Animais , Espinhas Dendríticas/ultraestrutura , Giro Denteado/ultraestrutura , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Regulação para Baixo , Eletrochoque , Reação de Fuga/fisiologia , Desamparo Aprendido , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X7/genética , Sinapses/ultraestrutura
13.
Glia ; 62(10): 1671-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24895290

RESUMO

The substantia gelatinosa (SG) of the spinal cord processes incoming painful information to ascending projection neurons. Whole-cell patch clamp recordings from SG spinal cord slices documented that in a low Ca(2+) /no Mg(2+) (low X(2+) ) external medium adenosine triphosphate (ATP)/dibenzoyl-ATP, Bz-ATP) caused inward current responses, much larger in amplitude than those recorded in a normal X(2+) -containing bath medium. The effect of Bz-ATP was antagonized by the selective P2X7 receptor antagonist A-438079. Neuronal, but not astrocytic Bz-ATP currents were strongly inhibited by a combination of the ionotropic glutamate receptor antagonists AP-5 and CNQX. In fact, all neurons and some astrocytes responded to NMDA, AMPA, and muscimol with inward current, demonstrating the presence of the respective receptors. The reactive oxygen species H2 O2 potentiated the effect of Bz-ATP at neurons but not at astrocytes. Hippocampal CA1 neurons exhibited a behavior similar to, but not identical with SG neurons. Although a combination of AP-5 and CNQX almost abolished the effect of Bz-ATP, H2 O2 was inactive. A Bz-ATP-dependent and A-438079-antagonizable reactive oxygen species production in SG slices was proven by a microelectrode biosensor. Immunohistochemical investigations showed the colocalization of P2X7-immunoreactivity with microglial (Iba1), but not astrocytic (GFAP, S100ß) or neuronal (MAP2) markers in the SG. It is concluded that SG astrocytes possess P2X7 receptors; their activation leads to the release of glutamate, which via NMDA- and AMPA receptor stimulation induces cationic current in the neighboring neurons. P2X7 receptors have a very low density under resting conditions but become functionally upregulated under pathological conditions.


Assuntos
Astrócitos/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Substância Gelatinosa/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Camundongos Transgênicos , Microeletrodos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Substância Gelatinosa/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/metabolismo
14.
Neurobiol Dis ; 70: 162-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24971933

RESUMO

In this study the role of P2Y12 receptors (P2Y12R) was explored in rodent models of inflammatory and neuropathic pain and in acute thermal nociception. In correlation with their activity to block the recombinant human P2Y12R, the majority of P2Y12R antagonists alleviated mechanical hyperalgesia dose-dependently, following intraplantar CFA injection, and after partial ligation of the sciatic nerve in rats. They also caused an increase in thermal nociceptive threshold in the hot plate test. Among the six P2Y12R antagonists evaluated in the pain studies, the selective P2Y12 receptor antagonist PSB-0739 was most potent upon intrathecal application. P2Y12R mRNA and IL-1ß protein were time-dependently overexpressed in the rat hind paw and lumbar spinal cord following intraplantar CFA injection. This was accompanied by the upregulation of TNF-α, IL-6 and IL-10 in the hind paw. PSB-0739 (0.3mg/kg i.t.) attenuated CFA-induced expression of cytokines in the hind paw and of IL-1ß in the spinal cord. Subdiaphragmatic vagotomy and the α7 nicotinic acetylcholine receptor antagonist MLA occluded the effect of PSB-0739 (i.t.) on pain behavior and peripheral cytokine induction. Denervation of sympathetic nerves by 6-OHDA pretreatment did not affect the action of PSB-0739. PSB-0739, in an analgesic dose, did not influence motor coordination and platelet aggregation. Genetic deletion of the P2Y12R in mice reproduced the effect of P2Y12R antagonists on mechanical hyperalgesia in inflammatory and neuropathic pain models, on acute thermal nociception and on the induction of spinal IL-1ß. Here we report the robust involvement of the P2Y12R in inflammatory pain. The anti-hyperalgesic effect of P2Y12R antagonism could be mediated by the inhibition of both central and peripheral cytokine production and involves α7-receptor mediated efferent pathways.


Assuntos
Citocinas/metabolismo , Dor/tratamento farmacológico , Dor/fisiopatologia , Receptores Purinérgicos P2Y12/metabolismo , Analgésicos/farmacologia , Animais , Células CHO , Linhagem Celular Tumoral , Quimera , Cricetulus , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Ratos Wistar , Receptores Purinérgicos P2Y12/genética
15.
J Headache Pain ; 15: 24, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24885962

RESUMO

BACKGROUND: Purine receptors participate in peripheral and central sensitization and are associated with migraine headache. We investigated the role of P2X7 receptor (P2X7) in a nitroglycerin (NTG)-induced mouse model of migraine. METHODS: Intraperitoneal NTG injection (15 mg/kg) triggered thermal hyperalgesia in the hindpaws of wild-type C57BL/6J mice, followed by the induction of c-fos in upper cervical spinal cord and trigeminal nucleus caudalis. The effect of genetic deletion of P2X7 and the selective P2X7 antagonist Brilliant Blue G (BBG) were examined on hyperalgesia and c-fos induction. RESULTS: NTG decreased the paw withdrawal threshold in both wild-type and P2X7 knockout mice. Nevertheless, subacute BBG treatment (50 mg/kg/day i.p.) completely prevented the effect of NTG in wild-type, but not in knockout mice. Whereas P2X7 deficiency differentially affected the expression of c-fos, the average number of fos-immuno-reactive neurons in trigeminal nucleus caudalis, but not in upper cervical spinal cord was lower in BBG-treated wild-type mice after NTG treatment. CONCLUSIONS: Our results show that P2X7 receptors might participate in the pathogenesis of migraine, although upregulation of other P2X receptors probably compensate for the loss of its action in knockout mice. The data also suggest the therapeutic potential of P2X7 antagonists for the treatment of migraine.


Assuntos
Modelos Animais de Doenças , Deleção de Genes , Transtornos de Enxaqueca/genética , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Distribuição Aleatória
16.
iScience ; 27(3): 109284, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444608

RESUMO

Purinergic dysfunctions are associated with mania and depression pathogenesis. P2X7 receptor (P2X7R) mediates the IL-1ß maturation via NLRP3 inflammasome activation. We tested in a mouse model of the subchronic amphetamine (AMPH)-induced hyperactivity whether P2X7R inhibition alleviated mania-like behavior through IL-1ß. Treatment with JNJ-47965567, a P2X7R antagonist, abolished AMPH-induced hyperlocomotion in wild-type and IL-1α/ß-knockout male mice. The NLRP3 inhibitor MCC950 failed to reduce AMPH-induced locomotion in WT mice, whereas the IL-1 receptor antagonist anakinra slightly increased it. AMPH increased IL-10, TNF-α, and TBARS levels, but did not influence BDNF levels, serotonin, dopamine, and noradrenaline content in brain tissues in either genotypes. JNJ-47965567 and P2rx7-gene deficiency, but not IL-1α/ß-gene deficiency, attenuated AMPH-induced [3H]dopamine release from striatal slices. In wild-type and IL-1α/ß-knockout female mice, JNJ-47965567 was also effective in attenuating AMPH-induced hyperlocomotion. This study suggests that AMPH-induced hyperactivity is modulated by P2X7Rs, but not through IL-1ß.

17.
Int J Neuropsychopharmacol ; 16(1): 213-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22243662

RESUMO

The purpose of this study was to explore how genetic deletion and pharmacological antagonism of the P2X7 receptor (P2rx7) alter mood-related behaviour, gene expression and stress reactivity in the brain. The forced swim test (FST), tail suspension test (TST) and amphetamine-induced hyperlocomotion (AH) tests were used in wild-type (P2rx7(+/+)) and P2rx7-deficient (P2rx7(-/-)) mice. Biogenic amine levels were analysed in the amygdala and striatum, adrenocorticotropic hormone (ACTH) and corticosterone levels were measured in the plasma and pituitary after restraint stress. Chimeric mice were generated by bone marrow transplantation. A whole genome microarray analysis with real-time polymerase chain reaction validation was performed on the amygdala. In the absence of P2rx7s decreased behavioural despair in the FST, reduced immobility in the TST and attenuated amphetamine-induced hyperactivity were detected. Basal norepinephrine levels were elevated in the amygdala, whereas stress-induced ACTH and corticosterone responses were alleviated in P2rx7(-/-) mice. Sub-acute treatment with the selective P2rx7 antagonist, Brilliant Blue G, reproduced the effect of genetic deletion in the TST and AH test in P2rx7(+/+) but not P2rx7(-/-) mice. No change in behavioural phenotype was observed in chimeras lacking the P2rx7 in their haematopoietic compartment. Whole genome microarray analysis indicated a widespread up- and down-regulation of genes crucial for synaptic function and neuroplasticity by genetic deletion. Here, we present evidence that the absence of P2rx7s on non-haematopoietic cells leads to a mood-stabilizing phenotype in several behavioural models and suggest a therapeutic potential of P2rx7 antagonists for the treatment of mood disorders.


Assuntos
Afeto/fisiologia , Tonsila do Cerebelo/metabolismo , Depressão/genética , Regulação da Expressão Gênica , Receptores Purinérgicos P2X7/deficiência , Estresse Psicológico/genética , Animais , Depressão/metabolismo , Depressão/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Receptores Purinérgicos P2X7/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Natação/psicologia
18.
Neuropharmacology ; 233: 109541, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062423

RESUMO

The purinergic pathway mediates both pro-inflammatory and anti-inflammatory responses, whereas the breakdown of adenosine triphosphate (ATP) is in a critical equilibrium. Under physiological conditions, extracellular ATP is maintained at a nanomolar concentration. Whether released into the medium following tissue damage, inflammation, or hypoxia, ATP is considered a clear indicator of cell damage and a marker of pathological conditions. In this overview, we provide an update on the participation of P2 receptor-mediated purinergic signaling in normal and pathological brain development, with special emphasis on neurodevelopmental psychiatric disorders. Since purinergic signaling is ubiquitous, it is not surprising that it plays a prominent role in developmental processes and pathological alterations. The main aim of this review is to conceptualize the time-dependent dynamic changes in the participation of different players in the purinome in shaping the normal and aberrant developmental patterns and diseases of the central nervous system over one's lifespan. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Assuntos
Receptores Purinérgicos P2 , Humanos , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Transdução de Sinais/fisiologia , Encéfalo/metabolismo , Envelhecimento
19.
Front Pharmacol ; 14: 1241406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908978

RESUMO

Background: As a member of the purinergic receptor family, divalent cation-regulated ionotropic P2X7 (P2rx7) plays a role in the pathophysiology of psychiatric disorders. This study aimed to investigate whether the effects of acute zinc administration and long-term zinc deprivation on depression-like behaviors in mice are mediated by P2X7 receptors. Methods: The antidepressant-like effect of elevated zinc level was studied using a single acute intraperitoneal injection in C57BL6/J wild-type and P2rx7 gene-deficient (P2rx7 -/-) young adult and elderly animals in the tail suspension test (TST) and the forced swim test (FST). In the long-term experiments, depression-like behavior caused by zinc deficiency was investigated with the continuous administration of zinc-reduced and control diets for 8 weeks, followed by the same behavioral tests. The actual change in zinc levels owing to the treatments was examined by assaying serum zinc levels. Changes in monoamine and brain-derived neurotrophic factor (BDNF) levels were measured from the hippocampus and prefrontal cortex brain areas by enzyme-linked immunosorbent assay and high-performance liquid chromatography, respectively. Results: A single acute zinc treatment increased the serum zinc level evoked antidepressant-like effect in both genotypes and age groups, except TST in elderly P2rx7 -/- animals, where no significant effect was detected. Likewise, the pro-depressant effect of zinc deprivation was observed in young adult mice in the FST and TST, which was alleviated in the case of the TST in the absence of functional P2X7 receptors. Among elderly mice, no pro-depressant effect was observed in P2rx7 -/- mice in either tests. Treatment and genotype changes in monoamine and BDNF levels were also detected in the hippocampi. Conclusion: Changes in zinc intake were associated with age-related changes in behavior in the TST and FST. The antidepressant-like effect of zinc is partially mediated by the P2X7 receptor.

20.
iScience ; 26(9): 107560, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37649698

RESUMO

ATP-gated P2X7 receptors (P2X7Rs) play a crucial role in brain disorders. However, how they affect normal and pathological synaptic transmission is still largely unclear. Here, by using whole-cell patch-clamp technique to record AMPA- and NMDA receptor-mediated excitatory postsynaptic currents (s/mEPSCs) in dentate gyrus granule cells (DG GCs), we revealed a modulation by P2X7Rs of presynaptic sites, especially originated from entorhinal cortex (EC)-GC path but not the mossy cell (MC)-GC path. The involvement of P2X7Rs was confirmed using a pharmacological approach. Additionally, the acute activation of P2X7Rs directly elevated calcium influx from EC-GC terminals. In postnatal phencyclidine (PCP)-induced mouse model of schizophrenia, we observed that P2X7R deficiency restored the EC-GC synapse alteration and alleviated PCP-induced symptoms. To summarize, P2X7Rs participate in the modulation of GC excitatory neurotransmission in the DG via EC-GC pathway, contributing to pathological alterations of neuronal functions leading to neurodevelopmental disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA