Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35148840

RESUMO

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismo
2.
Cell ; 184(19): 4953-4968.e16, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34492226

RESUMO

Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.


Assuntos
COVID-19/patologia , Interferons/metabolismo , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Fatores Etários , Envelhecimento/patologia , COVID-19/genética , COVID-19/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Interferons/genética , Leucócitos/patologia , Leucócitos/virologia , Pulmão/patologia , Pulmão/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Carga Viral
3.
Cell ; 184(5): 1171-1187.e20, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621484

RESUMO

SARS-CoV-2 can mutate and evade immunity, with consequences for efficacy of emerging vaccines and antibody therapeutics. Here, we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K. We demonstrate N439K S protein has enhanced binding affinity to the hACE2 receptor, and N439K viruses have similar in vitro replication fitness and cause infections with similar clinical outcomes as compared to wild type. We show the N439K mutation confers resistance against several neutralizing monoclonal antibodies, including one authorized for emergency use by the US Food and Drug Administration (FDA), and reduces the activity of some polyclonal sera from persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics.


Assuntos
COVID-19/imunologia , Aptidão Genética , Evasão da Resposta Imune , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Humanos , Mutação , Filogenia , SARS-CoV-2/química , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Virulência
4.
Nat Immunol ; 21(1): 42-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31768073

RESUMO

Pathogen-associated molecular patterns (PAMPs) have the capacity to couple inflammatory gene expression to changes in macrophage metabolism, both of which influence subsequent inflammatory activities. Similar to their microbial counterparts, several self-encoded damage-associated molecular patterns (DAMPs) induce inflammatory gene expression. However, whether this symmetry in host responses between PAMPs and DAMPs extends to metabolic shifts is unclear. Here, we report that the self-encoded oxidized phospholipid oxPAPC alters the metabolism of macrophages exposed to lipopolysaccharide. While cells activated by lipopolysaccharide rely exclusively on glycolysis, macrophages exposed to oxPAPC also use mitochondrial respiration, feed the Krebs cycle with glutamine, and favor the accumulation of oxaloacetate in the cytoplasm. This metabolite potentiates interleukin-1ß production, resulting in hyperinflammation. Similar metabolic adaptions occur in vivo in hypercholesterolemic mice and human subjects. Drugs that interfere with oxPAPC-driven metabolic changes reduce atherosclerotic plaque formation in mice, thereby underscoring the importance of DAMP-mediated activities in pathophysiological conditions.


Assuntos
Alarminas/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Fosfatidilcolinas/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glicólise/fisiologia , Hipercolesterolemia/imunologia , Hipercolesterolemia/patologia , Inflamação/prevenção & controle , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Fosforilação Oxidativa , Placa Aterosclerótica/patologia , Placa Aterosclerótica/prevenção & controle
5.
Nature ; 618(7965): 590-597, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258672

RESUMO

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Assuntos
Anticorpos Antivirais , Especificidade de Anticorpos , Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Mimetismo Molecular , Neuraminidase , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Especificidade de Anticorpos/imunologia , Arginina/química , Domínio Catalítico , Hemaglutininas Virais/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/enzimologia , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano , Ácidos Siálicos/química
6.
Nature ; 584(7821): 353-363, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32659783

RESUMO

Antibody-dependent enhancement (ADE) of disease is a general concern for the development of vaccines and antibody therapies because the mechanisms that underlie antibody protection against any virus have a theoretical potential to amplify the infection or trigger harmful immunopathology. This possibility requires careful consideration at this critical point in the pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we review observations relevant to the risks of ADE of disease, and their potential implications for SARS-CoV-2 infection. At present, there are no known clinical findings, immunological assays or biomarkers that can differentiate any severe viral infection from immune-enhanced disease, whether by measuring antibodies, T cells or intrinsic host responses. In vitro systems and animal models do not predict the risk of ADE of disease, in part because protective and potentially detrimental antibody-mediated mechanisms are the same and designing animal models depends on understanding how antiviral host responses may become harmful in humans. The implications of our lack of knowledge are twofold. First, comprehensive studies are urgently needed to define clinical correlates of protective immunity against SARS-CoV-2. Second, because ADE of disease cannot be reliably predicted after either vaccination or treatment with antibodies-regardless of what virus is the causative agent-it will be essential to depend on careful analysis of safety in humans as immune interventions for COVID-19 move forward.


Assuntos
Anticorpos Antivirais/efeitos adversos , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores/imunologia , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Animais , Anticorpos Neutralizantes/efeitos adversos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/prevenção & controle , Vírus da Dengue/imunologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Macaca mulatta , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Orthomyxoviridae/imunologia , Pandemias , Ratos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2 , Vacinas Virais/efeitos adversos , Vacinas Virais/imunologia
7.
Nature ; 583(7815): 290-295, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32422645

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus that is responsible for the current pandemic of coronavirus disease 2019 (COVID-19), which has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 20201,2. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which we identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003. One antibody (named S309) potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2, by engaging the receptor-binding domain of the S glycoprotein. Using cryo-electron microscopy and binding assays, we show that S309 recognizes an epitope containing a glycan that is conserved within the Sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails that include S309 in combination with other antibodies that we identified further enhanced SARS-CoV-2 neutralization, and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and antibody cocktails containing S309 for prophylaxis in individuals at a high risk of exposure or as a post-exposure therapy to limit or treat severe disease.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , Reações Cruzadas/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linfócitos B/imunologia , Betacoronavirus/química , Betacoronavirus/efeitos dos fármacos , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Infecções por Coronavirus/virologia , Reações Cruzadas/efeitos dos fármacos , Microscopia Crioeletrônica , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Células HEK293 , Humanos , Evasão da Resposta Imune/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Memória Imunológica/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Modelos Moleculares , Testes de Neutralização , Pandemias/prevenção & controle , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Pneumonia Viral/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus/química , Células Vero
8.
EMBO Rep ; 24(7): e55986, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212045

RESUMO

Tumor necrosis factor (TNF) is a key inflammatory cytokine that warns recipient cells of a nearby infection or tissue damage. Acute exposure to TNF activates characteristic oscillatory dynamics of the transcription factor NFκB and induces a characteristic gene expression program; these are distinct from the responses of cells directly exposed to pathogen-associated molecular patterns (PAMPs). Here, we report that tonic TNF exposure is critical for safeguarding TNF's specific functions. In the absence of tonic TNF conditioning, acute exposure to TNF causes (i) NFκB signaling dynamics that are less oscillatory and more like PAMP-responsive NFκB dynamics, (ii) immune gene expression that is more similar to the Pam3CSK4 response program, and (iii) broader epigenomic reprogramming that is characteristic of PAMP-responsive changes. We show that the absence of tonic TNF signaling effects subtle changes to TNF receptor availability and dynamics such that enhanced pathway activity results in non-oscillatory NFκB. Our results reveal tonic TNF as a key tissue determinant of the specific cellular responses to acute paracrine TNF exposure, and their distinction from responses to direct exposure to PAMPs.


Assuntos
Moléculas com Motivos Associados a Patógenos , Fator de Necrose Tumoral alfa , Moléculas com Motivos Associados a Patógenos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Macrófagos/metabolismo
9.
Nature ; 576(7785): 138-142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31748741

RESUMO

Haem is an essential prosthetic group of numerous proteins and a central signalling molecule in many physiologic processes1,2. The chemical reactivity of haem means that a network of intracellular chaperone proteins is required to avert the cytotoxic effects of free haem, but the constituents of such trafficking pathways are unknown3,4. Haem synthesis is completed in mitochondria, with ferrochelatase adding iron to protoporphyrin IX. How this vital but highly reactive metabolite is delivered from mitochondria to haemoproteins throughout the cell remains poorly defined3,4. Here we show that progesterone receptor membrane component 2 (PGRMC2) is required for delivery of labile, or signalling haem, to the nucleus. Deletion of PGMRC2 in brown fat, which has a high demand for haem, reduced labile haem in the nucleus and increased stability of the haem-responsive transcriptional repressors Rev-Erbα and BACH1. Ensuing alterations in gene expression caused severe mitochondrial defects that rendered adipose-specific PGRMC2-null mice unable to activate adaptive thermogenesis and prone to greater metabolic deterioration when fed a high-fat diet. By contrast, obese-diabetic mice treated with a small-molecule PGRMC2 activator showed substantial improvement of diabetic features. These studies uncover a role for PGRMC2 in intracellular haem transport, reveal the influence of adipose tissue haem dynamics on physiology and suggest that modulation of PGRMC2 may revert obesity-linked defects in adipocytes.


Assuntos
Adipócitos/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animais , Homeostase , Humanos , Espaço Intracelular/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de Progesterona/deficiência , Receptores de Progesterona/genética , Transcrição Gênica
10.
Genes Dev ; 31(7): 702-717, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28446598

RESUMO

In eukaryotes, a dynamic ribonucleic protein machine known as the spliceosome catalyzes the removal of introns from premessenger RNA (pre-mRNA). Recent studies show the processes of RNA synthesis and RNA processing to be spatio-temporally coordinated, indicating that RNA splicing takes place in the context of chromatin. H2A.Z is a highly conserved histone variant of the canonical histone H2A. In Saccharomyces cerevisiae, H2A.Z is deposited into chromatin by the SWR-C complex, is found near the 5' ends of protein-coding genes, and has been implicated in transcription regulation. Here we show that splicing of intron-containing genes in cells lacking H2A.Z is impaired, particularly under suboptimal splicing conditions. Cells lacking H2A.Z are especially dependent on a functional U2 snRNP (small nuclear RNA [snRNA] plus associated proteins), as H2A.Z shows extensive genetic interactions with U2 snRNP-associated proteins, and RNA sequencing (RNA-seq) reveals that introns with nonconsensus branch points are particularly sensitive to H2A.Z loss. Consistently, H2A.Z promotes efficient spliceosomal rearrangements involving the U2 snRNP, as H2A.Z loss results in persistent U2 snRNP association and decreased recruitment of downstream snRNPs to nascent RNA. H2A.Z impairs transcription elongation, suggesting that spliceosome rearrangements are tied to H2A.Z's role in elongation. Depletion of disassembly factor Prp43 suppresses H2A.Z-mediated splice defects, indicating that, in the absence of H2A.Z, stalled spliceosomes are disassembled, and unspliced RNAs are released. Together, these data demonstrate that H2A.Z is required for efficient pre-mRNA splicing and indicate a role for H2A.Z in coordinating the kinetics of transcription elongation and splicing.


Assuntos
Regulação Fúngica da Expressão Gênica , Histonas/genética , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Íntrons/genética , Nucleossomos/genética , Regiões Promotoras Genéticas , Precursores de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética
12.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031243

RESUMO

The modulation of the transcriptome is among the earliest responses to infection. However, defining the transcriptomic signatures of disease is challenging because logistic, technical, and cost factors limit the size and representativeness of samples in clinical studies. These limitations lead to a poor performance of signatures when applied to new datasets. Although the study focuses on infection, the central hypothesis of the work is the generalization of sets of signatures across diseases. We use a machine learning approach to identify common elements in datasets and then test empirically whether they are informative about a second dataset from a disease or process distinct from the original dataset. We identify sets of genes, which we name transfer signatures, that are predictive across diverse datasets and/or species (e.g., rhesus to humans). We demonstrate the usefulness of transfer signatures in two use cases: the progression of latent to active tuberculosis and the severity of COVID-19 and influenza A H1N1 infection. This indicates that transfer signatures can be deployed in settings that lack disease-specific biomarkers. The broad significance of our work lies in the concept that a small set of archetypal human immunophenotypes, captured by transfer signatures, can explain a larger set of responses to diverse diseases.


Assuntos
Doenças Transmissíveis/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Bases de Dados Genéticas , Humanos , Tuberculose/genética , Viroses/genética
13.
Eur J Immunol ; 52(1): 109-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333764

RESUMO

Growing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant maturation in COVID-19, which negatively affects T-cell activation. The presence of effector T cells in patients with mild disease and dysfunctional T cells in severely ill patients suggests that adequate T-cell responses limit disease severity. Understanding how cDCs cope with SARS-CoV-2 can help elucidate how protective immune responses are generated. Here, we report that cDC2 subtypes exhibit similar infection-induced gene signatures, with the upregulation of IFN-stimulated genes and IL-6 signaling pathways. Furthermore, comparison of cDCs between patients with severe and mild disease showed severely ill patients to exhibit profound downregulation of genes encoding molecules involved in antigen presentation, such as MHCII, TAP, and costimulatory proteins, whereas we observed the opposite for proinflammatory molecules, such as complement and coagulation factors. Thus, as disease severity increases, cDC2s exhibit enhanced inflammatory properties and lose antigen presentation capacity. Moreover, DC3s showed upregulation of anti-apoptotic genes and accumulated during infection. Direct exposure of cDC2s to the virus in vitro recapitulated the activation profile observed in vivo. Our findings suggest that SARS-CoV-2 interacts directly with cDC2s and implements an efficient immune escape mechanism that correlates with disease severity by downregulating crucial molecules required for T-cell activation.


Assuntos
COVID-19/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Humanos
14.
Brain ; 144(1): 251-265, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33221837

RESUMO

Neuronal dendritic arborizations and dendritic spines are crucial for a normal synaptic transmission and may be critically involved in the pathophysiology of epilepsy. Alterations in dendritic morphology and spine loss mainly in hippocampal neurons have been reported both in epilepsy animal models and in human brain tissues from patients with epilepsy. However, it is still unclear whether these dendritic abnormalities relate to the cause of epilepsy or are generated by seizure recurrence. We investigated fine neuronal structures at the level of dendritic and spine organization using Golgi impregnation, and analysed synaptic networks with immunohistochemical markers of glutamatergic (vGLUT1) and GABAergic (vGAT) axon terminals in human cerebral cortices derived from epilepsy surgery. Specimens were obtained from 28 patients with different neuropathologically defined aetiologies: type Ia and type II focal cortical dysplasia, cryptogenic (no lesion) and temporal lobe epilepsy with hippocampal sclerosis. Autoptic tissues were used for comparison. Three-dimensional reconstructions of Golgi-impregnated neurons revealed severe dendritic reshaping and spine alteration in the core of the type II focal cortical dysplasia. Dysmorphic neurons showed increased dendritic complexity, reduction of dendritic spines and occasional filopodia-like protrusions emerging from the soma. Surprisingly, the intermingled normal-looking pyramidal neurons also showed severe spine loss and simplified dendritic arborization. No changes were observed outside the dysplasia (perilesional tissue) or in neocortical postsurgical tissue obtained in the other patient groups. Immunoreactivities of vGLUT1 and vGAT showed synaptic reorganization in the core of type II dysplasia characterized by the presence of abnormal perisomatic baskets around dysmorphic neurons, in particular those with filopodia-like protrusions, and changes in vGLUT1/vGAT expression. Ultrastructural data in type II dysplasia highlighted the presence of altered neuropil engulfed by glial processes. Our data indicate that the fine morphological aspect of neurons and dendritic spines are normal in epileptogenic neocortex, with the exception of type II dysplastic lesions. The findings suggest that the mechanisms leading to this severe form of cortical malformation interfere with the normal dendritic arborization and synaptic network organization. The data argue against the concept that long-lasting epilepsy and seizure recurrence per se unavoidably produce a dendritic pathology.


Assuntos
Córtex Cerebral/ultraestrutura , Dendritos/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Epilepsia/patologia , Sinapses/ultraestrutura , Adolescente , Adulto , Córtex Cerebral/metabolismo , Pré-Escolar , Humanos , Lactente , Microscopia Eletrônica , Pessoa de Meia-Idade , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Adulto Jovem
15.
Proc Natl Acad Sci U S A ; 116(20): 9959-9968, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31019078

RESUMO

The transcription factor nuclear factor of activated T cells (NFAT) has a key role in both T cell activation and tolerance and has emerged as an important target of immune modulation. NFAT directs the effector arm of the immune response in the presence of activator protein-1 (AP-1), and T cell anergy/exhaustion in the absence of AP-1. Envisioning a strategy for selective modulation of the immune response, we designed a FRET-based high-throughput screen to identify compounds that disrupt the NFAT:AP-1:DNA complex. We screened ∼202,000 small organic compounds and identified 337 candidate inhibitors. We focus here on one compound, N-(3-acetamidophenyl)-2-[5-(1H-benzimidazol-2-yl)pyridin-2-yl]sulfanylacetamide (Compound 10), which disrupts the NFAT:AP-1 interaction at the composite antigen-receptor response element-2 site without affecting the binding of NFAT or AP-1 alone to DNA. Compound 10 binds to DNA in a sequence-selective manner and inhibits the transcription of the Il2 gene and several other cyclosporin A-sensitive cytokine genes important for the effector immune response. This study provides proof-of-concept that small molecules can inhibit the assembly of specific DNA-protein complexes, and opens a potential new approach to treat human diseases where known transcription factors are deregulated.


Assuntos
Acetamidas/farmacologia , Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição NFATC/antagonistas & inibidores , Fator de Transcrição AP-1/antagonistas & inibidores , Citocinas/metabolismo , DNA/metabolismo , Escherichia coli , Ensaios de Triagem em Larga Escala , Fatores de Transcrição NFATC/metabolismo , Estudo de Prova de Conceito , Bibliotecas de Moléculas Pequenas , Fator de Transcrição AP-1/metabolismo
16.
Exp Dermatol ; 30(11): 1711-1716, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34036652

RESUMO

BACKGROUND: Human papillomavirus (HPV) infection is known to promote the development of mucosal squamous cell carcinoma (mSCC), including pathologically high-grade lesions, but its role in cutaneous squamous cell carcinoma (cuSCC) remains unclear, particularly in lesions that are considered high risk. OBJECTIVE: We aimed to determine whether enhanced HPV transcriptional activity can be detected in high-risk cuSCC samples compared with low-grade SCC samples or normal skin. METHODS: We performed RNA sequencing of cuSCC across 23 risk-stratified skin lesions. A subset of samples was tested for the presence of HPV DNA. High-quality, non-human reads from each sample group were used for viral analysis using Microbiome Coverage Profiler. RESULTS: None of the samples analysed had detectable expression of HPV RNA, while 64% of samples tested positive for HPV DNA. All samples were found to have expression of human endogenous retrovirus, and multiple samples showed expression of other viruses. CONCLUSIONS: Viral and prophage gene expression can be monitored in cuSCC or normal skin biopsies, yet no sample in our study showed evidence of active HPV gene expression despite evidence of HPV genome presence. This suggests HPV transcription does not play a role in differentiating high-risk cuSCCs from low-risk cuSCCs or normal skin.


Assuntos
Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Expressão Gênica , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/patologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia , Idoso , Biópsia , Sondas de DNA de HPV , Feminino , Humanos , Masculino , Medição de Risco
17.
N Engl J Med ; 377(17): 1648-1656, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29069555

RESUMO

BACKGROUND: Detailed neuropathological information on the structural brain lesions underlying seizures is valuable for understanding drug-resistant focal epilepsy. METHODS: We report the diagnoses made on the basis of resected brain specimens from 9523 patients who underwent epilepsy surgery for drug-resistant seizures in 36 centers from 12 European countries over 25 years. Histopathological diagnoses were determined through examination of the specimens in local hospitals (41%) or at the German Neuropathology Reference Center for Epilepsy Surgery (59%). RESULTS: The onset of seizures occurred before 18 years of age in 75.9% of patients overall, and 72.5% of the patients underwent surgery as adults. The mean duration of epilepsy before surgical resection was 20.1 years among adults and 5.3 years among children. The temporal lobe was involved in 71.9% of operations. There were 36 histopathological diagnoses in seven major disease categories. The most common categories were hippocampal sclerosis, found in 36.4% of the patients (88.7% of cases were in adults), tumors (mainly ganglioglioma) in 23.6%, and malformations of cortical development in 19.8% (focal cortical dysplasia was the most common type, 52.7% of cases of which were in children). No histopathological diagnosis could be established for 7.7% of the patients. CONCLUSIONS: In patients with drug-resistant focal epilepsy requiring surgery, hippocampal sclerosis was the most common histopathological diagnosis among adults, and focal cortical dysplasia was the most common diagnosis among children. Tumors were the second most common lesion in both groups. (Funded by the European Union and others.).


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Epilepsia/patologia , Hipocampo/patologia , Malformações do Desenvolvimento Cortical/patologia , Adulto , Fatores Etários , Idade de Início , Neoplasias Encefálicas/complicações , Criança , Bases de Dados como Assunto , Epilepsia/etiologia , Epilepsia/cirurgia , Europa (Continente) , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical/complicações , Lobo Temporal/patologia
18.
Epilepsia ; 61(6): 1240-1252, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32463128

RESUMO

OBJECTIVE: Activity-dependent changes have been reported in animal models and in human epileptic specimens and could potentially be used as tissue biomarkers to evaluate the propensity of a tissue to generate seizure activity. In this context, cAMP-response element binding protein (CREB) activation was specifically reported in human epileptic foci and related mainly to interictal spike activity. To get further insights into CREB activation in human epilepsy, we analyzed pCREB expression on brain tissue samples from patients who underwent surgery for drug-resistant focal epilepsy, correlating this expression with intracranial stereo-electroencephalography (SEEG) recording in a subgroup. METHODS: Neocortical specimens from patients with neuropathological diagnosis of no lesion (cryptogenic), malformations of cortical development,mainly type II focal cortical dysplasia (FCD), and hippocampi with and without hippocampal sclerosis have been analyzed by immunohistochemistry. Peritumoral cortex from non-epileptic patients and autoptic samples were used as controls, whereas rat brains were used to test possible loss of pCREB antigenicity due to fixation procedures and postmortem delay. RESULTS: pCREB was consistently expressed in layer II neuronal nuclei in regions with normal cortical lamination both in epileptic and non-epileptic surgical tissues. In patients with SEEG recordings, this anatomical pattern was unrelated to the presence of interictal spike activity. Conversely, in the core of type II FCD, as well as in other developmental malformations, pCREB was scattered without any laminar specificity. Furthermore, quantitative data did not reveal significant differences between epileptic and non-epileptic tissues, except for an increased immunoreactivity in the core of type IIB FCD lesion related mainly to reactive glial and balloon cells. SIGNIFICANCE: The present data argue against the reliability of pCREB immunohistochemistry as a marker of epileptic focus but underscores its layer-related expression, suggesting a potential application in the study of malformations of cortical development, a wide range of diseases arising from perturbations of normal brain development.


Assuntos
Encéfalo/metabolismo , Encéfalo/cirurgia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia Resistente a Medicamentos/cirurgia , Adolescente , Adulto , Idoso , Animais , Encéfalo/patologia , Pré-Escolar , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Epilepsia Resistente a Medicamentos/genética , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Técnicas Estereotáxicas
19.
Epilepsia ; 61(8): 1581-1594, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32662890

RESUMO

OBJECTIVE: Drebrins are crucial for synaptic function and dendritic spine development, remodeling, and maintenance. In temporal lobe epilepsy (TLE) patients, a significant hippocampal synaptic reorganization occurs, and synaptic reorganization has been associated with hippocampal hyperexcitability. This study aimed to evaluate, in TLE patients, the hippocampal expression of drebrin using immunohistochemistry with DAS2 or M2F6 antibodies that recognize adult (drebrin A) or adult and embryonic (pan-drebrin) isoforms, respectively. METHODS: Hippocampal sections from drug-resistant TLE patients with hippocampal sclerosis (HS; TLE, n = 33), of whom 31 presented with type 1 HS and two with type 2 HS, and autopsy control cases (n = 20) were assayed by immunohistochemistry and evaluated for neuron density, and drebrin A and pan-drebrin expression. Double-labeling immunofluorescences were performed to localize drebrin A-positive spines in dendrites (MAP2), and to evaluate whether drebrin colocalizes with inhibitory (GAD65) and excitatory (VGlut1) presynaptic markers. RESULTS: Compared to controls, TLE patients had increased pan-drebrin in all hippocampal subfields and increased drebrin A-immunopositive area in all hippocampal subfields but CA1. Drebrin-positive spine density followed the same pattern as total drebrin quantification. Confocal microscopy indicated juxtaposition of drebrin-positive spines with VGlut1-positive puncta, but not with GAD65-positive puncta. Drebrin expression in the dentate gyrus of TLE cases was associated negatively with seizure frequency and positively with verbal memory. TLE patients with lower drebrin-immunopositive area in inner molecular layer (IML) than in outer molecular layer (OML) had a lower seizure frequency than those with higher or comparable drebrin-immunopositive area in IML compared with OML. SIGNIFICANCE: Our results suggest that changes in drebrin-positive spines and drebrin expression in the dentate gyrus of TLE patients are associated with lower seizure frequency, more preserved verbal memory, and a better postsurgical outcome.


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Neuropeptídeos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Lobectomia Temporal Anterior , Região CA1 Hipocampal/metabolismo , Região CA2 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Estudos de Casos e Controles , Dendritos/metabolismo , Dendritos/patologia , Giro Denteado/metabolismo , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Glutamato Descarboxilase/metabolismo , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Plasticidade Neuronal , Esclerose , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(13): E2776-E2785, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28283662

RESUMO

T-cell exhaustion is a progressive loss of effector function and memory potential due to persistent antigen exposure, which occurs in chronic viral infections and cancer. Here we investigate the relation between gene expression and chromatin accessibility in CD8+ tumor-infiltrating lymphocytes (TILs) that recognize a model tumor antigen and have features of both activation and functional exhaustion. By filtering out accessible regions observed in bystander, nonexhausted TILs and in acutely restimulated CD8+ T cells, we define a pattern of chromatin accessibility specific for T-cell exhaustion, characterized by enrichment for consensus binding motifs for Nr4a and NFAT transcription factors. Anti-PD-L1 treatment of tumor-bearing mice results in cessation of tumor growth and partial rescue of cytokine production by the dysfunctional TILs, with only limited changes in gene expression and chromatin accessibility. Our studies provide a valuable resource for the molecular understanding of T-cell exhaustion in cancer and other inflammatory settings.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Cromatina/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA