Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(6): 100566, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169079

RESUMO

The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.


Assuntos
Hemopexina , Metaloproteinase 14 da Matriz , Membrana Celular/metabolismo , Hemopexina/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Peptídeos/metabolismo , Proteólise , Humanos
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372952

RESUMO

Ovarian cancer is the sixth leading cause of cancer-related death in women, and both occurrence and mortality are increased in women over the age of 60. There are documented age-related changes in the ovarian cancer microenvironment that have been shown to create a permissive metastatic niche, including the formation of advanced glycation end products, or AGEs, that form crosslinks between collagen molecules. Small molecules that disrupt AGEs, known as AGE breakers, have been examined in other diseases, but their efficacy in ovarian cancer has not been evaluated. The goal of this pilot study is to target age-related changes in the tumor microenvironment with the long-term aim of improving response to therapy in older patients. Here, we show that AGE breakers have the potential to change the omental collagen structure and modulate the peritoneal immune landscape, suggesting a potential use for AGE breakers in the treatment of ovarian cancer.


Assuntos
Produtos Finais de Glicação Avançada , Neoplasias Ovarianas , Humanos , Feminino , Idoso , Projetos Piloto , Colágeno , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral
3.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810259

RESUMO

Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteolytic processes have been linked to cancer progression, particularly those facilitated by the matrix metalloproteinase (MMP) family. These proteases have been linked to enhanced migratory ability, extracellular matrix breakdown, and development of support systems for tumors. Several studies have reported the direct involvement of MMPs with ovarian cancer, as well as their mechanisms of action in the tumor microenvironment. MMPs play a key role in upregulating transcription factors, as well as the breakdown of structural proteins like collagen. Proteolytic mechanisms have been shown to enhance the ability of ovarian cancer cells to migrate and adhere to secondary sites allowing for efficient metastasis. Furthermore, angiogenesis for tumor growth and development of metastatic implants is influenced by upregulation of certain proteases, including MMPs. While proteases are produced normally in vivo, they can be upregulated by cancer-associated mutations, tumor-microenvironment interaction, stress-induced catecholamine production, and age-related pathologies. This review outlines the important role of proteases throughout ovarian cancer progression and metastasis.


Assuntos
Metaloproteinases da Matriz/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinases da Matriz/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteólise , Microambiente Tumoral
4.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830322

RESUMO

Mesothelin (MSLN), a glycoprotein normally expressed by mesothelial cells, is overexpressed in ovarian cancer (OvCa) suggesting a role in tumor progression, although the biological function is not fully understood. OvCa has a high mortality rate due to diagnosis at advanced stage disease with intraperitoneal metastasis. Tumor cells detach from the primary tumor as single cells or multicellular aggregates (MCAs) and attach to the mesothelium of organs within the peritoneal cavity producing widely disseminated secondary lesions. To investigate the role of host MSLN in the peritoneal cavity we used a mouse model with a null mutation in the MSLN gene (MSLNKO). The deletion of host MSLN expression modified the peritoneal ultrastructure resulting in abnormal mesothelial cell surface architecture and altered omental collagen fibril organization. Co-culture of murine OvCa cells with primary mesothelial cells regardless of MSLN expression formed compact MCAs. However, co-culture with MSLNKO mesothelial cells resulted in smaller MCAs. An allograft tumor study, using wild-type mice (MSLNWT) or MSLNKO mice injected intraperitoneally with murine OvCa cells demonstrated a significant decrease in peritoneal metastatic tumor burden in MSLNKO mice compared to MSLNWT mice. Together, these data support a role for host MSLN in the progression of OvCa metastasis.


Assuntos
Células Epiteliais/metabolismo , Mesotelina/genética , Neoplasias Ovarianas/genética , Neoplasias Peritoneais/genética , Células Estromais/metabolismo , Microambiente Tumoral/genética , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Células Epiteliais/patologia , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Mesotelina/deficiência , Mesotelina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Células Estromais/patologia
5.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531879

RESUMO

The effective clinical application of atmospheric pressure plasma jet (APPJ) treatments requires a well-founded methodology that can describe the interactions between the plasma jet and a treated sample and the temporal and spatial changes that result from the treatment. In this study, we developed a large-scale image analysis method to identify the cell-cycle stage and quantify damage to nuclear DNA in single cells. The method was then tested and used to examine spatio-temporal distributions of nuclear DNA damage in two cell lines from the same anatomic location, namely the oral cavity, after treatment with a nitrogen APPJ. One cell line was malignant, and the other, nonmalignant. The results showed that DNA damage in cancer cells was maximized at the plasma jet treatment region, where the APPJ directly contacted the sample, and declined radially outward. As incubation continued, DNA damage in cancer cells decreased slightly over the first 4 h before rapidly decreasing by approximately 60% at 8 h post-treatment. In nonmalignant cells, no damage was observed within 1 h after treatment, but damage was detected 2 h after treatment. Notably, the damage was 5-fold less than that detected in irradiated cancer cells. Moreover, examining damage with respect to the cell cycle showed that S phase cells were more susceptible to DNA damage than either G1 or G2 phase cells. The proposed methodology for large-scale image analysis is not limited to APPJ post-treatment applications and can be utilized to evaluate biological samples affected by any type of radiation, and, more so, the cell-cycle classification can be used on any cell type with any nuclear DNA staining.


Assuntos
Ciclo Celular/genética , Dano ao DNA , Neoplasias de Cabeça e Pescoço/genética , Gases em Plasma/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Pressão Atmosférica , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Desenho de Equipamento , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Aprendizado de Máquina , Nitrogênio/efeitos adversos , Nitrogênio/farmacologia , Fosforilação/efeitos dos fármacos , Gases em Plasma/efeitos adversos , Gases em Plasma/química , Análise Espaço-Temporal , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
6.
J Biol Chem ; 292(32): 13111-13121, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28655772

RESUMO

Membrane type 1 matrix metalloproteinase (MT1-MMP, MMP-14) is a transmembrane collagenase highly expressed in metastatic ovarian cancer and correlates with poor survival. Accumulating evidence shows that the cytoplasmic tail of MT1-MMP is subjected to phosphorylation, and this post-translational modification regulates enzymatic activity at the cell surface. To investigate the potential role of MT1-MMP cytoplasmic residue Thr567 phosphorylation in regulation of metastasis-associated behaviors, ovarian cancer cells that express low endogenous levels of MT1-MMP were engineered to express wild-type MT1-MMP, a phosphomimetic mutant (T567E), or a phosphodeficient mutant (T567A). Results show that Thr567 modulation influences behavior of both individual cells and multicellular aggregates (MCAs). The acquisition of either wild-type or mutant MT1-MMP expression results in altered cohesion of epithelial sheets and the formation of more compact MCAs relative to parental cells. Cells expressing MT1-MMP-T567E phosphomimetic mutants exhibit enhanced cell migration. Furthermore, MCAs formed from MT1-MMP-T567E-expressing cells adhere avidly to both intact ex vivo peritoneal explants and three-dimensional collagen gels. Interaction of these MCAs with peritoneal mesothelium disrupts mesothelial integrity, exposing the submesothelial collagen matrix on which MT1-MMP-T567E MCAs rapidly disperse. Together, these findings suggest that post-translational regulation of the Thr567 in the MT1-MMP cytoplasmic tail may function as a regulatory mechanism to impact ovarian cancer metastatic success.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Neoplasias Ovarianas/metabolismo , Peritônio/patologia , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Animais , Adesão Celular , Agregação Celular , Linhagem Celular Tumoral , Movimento Celular , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/genética , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/ultraestrutura , Peritônio/ultraestrutura , Fosforilação , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Treonina/química , Técnicas de Cultura de Tecidos
7.
Anal Bioanal Chem ; 410(5): 1583-1594, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29282499

RESUMO

Cancer metastasis risk increases in older individuals, but the mechanisms for this risk increase are unclear. Many peritoneal cancers, including ovarian cancer, preferentially metastasize to peritoneal fat depots. However, there is a dearth of studies exploring aged peritoneal adipose tissue in the context of cancer. Because adipose tissue produces signals which influence several diseases including cancer, proteomics of adipose tissue in aged and young mice may provide insight into metastatic mechanisms. We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. We identified 2308 protein groups and quantified 2167 groups, among which several protein groups showed twofold or greater abundance differences between the aged and young cohorts. Cancer-related gene products previously identified as significant in another age-related study were found altered in this study. Several gene products known to suppress proliferation and cellular invasion were found downregulated in the aged cohort, including R-Ras, Arid1a, and heat shock protein ß1. In addition, multiple protein groups were identified within single cohorts, including the proteins Cd11a, Stat3, and Ptk2b. These data suggest that adipose tissue is a strong candidate for analysis to identify possible contributors to cancer metastasis in older subjects. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged. Graphical abstract We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. These fat depots are preferential sites for many peritoneal cancers. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged.


Assuntos
Tecido Adiposo Branco/química , Neoplasias Ovarianas , Proteômica , Tecido Adiposo Branco/patologia , Fatores Etários , Animais , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/fisiopatologia , Neoplasias Ovarianas/secundário
8.
J Biol Chem ; 291(13): 6936-45, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26839311

RESUMO

Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/genética , NF-kappa B/genética , Lesões Pré-Cancerosas/genética , Receptor PAR-2/genética , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Humanos , Inflamação , Calicreínas/genética , Calicreínas/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , NF-kappa B/agonistas , NF-kappa B/metabolismo , Transplante de Neoplasias , Oligopeptídeos/farmacologia , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
9.
J Biol Chem ; 290(36): 22143-54, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26175151

RESUMO

During tumor progression, epithelial ovarian cancer (EOC) cells undergo epithelial-to-mesenchymal transition (EMT), which influences metastatic success. Mutation-dependent activation of Wnt/ß-catenin signaling has been implicated in gain of mesenchymal phenotype and loss of differentiation in several solid tumors; however, similar mutations are rare in most EOC histotypes. Nevertheless, evidence for activated Wnt/ß-catenin signaling in EOC has been reported, and immunohistochemical analysis of human EOC tumors demonstrates nuclear staining in all histotypes. This study addresses the hypothesis that the bioactive lipid lysophosphatidic acid (LPA), prevalent in the EOC microenvironment, functions to regulate EMT in EOC. Our results demonstrate that LPA induces loss of junctional ß-catenin, stimulates clustering of ß1 integrins, and enhances the conformationally active population of surface ß1 integrins. Furthermore, LPA treatment initiates nuclear translocation of ß-catenin and transcriptional activation of Wnt/ß-catenin target genes resulting in gain of mesenchymal marker expression. Together these data suggest that LPA initiates EMT in ovarian tumors through ß1-integrin-dependent activation of Wnt/ß-catenin signaling, providing a novel mechanism for mutation-independent activation of this pathway in EOC progression.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Western Blotting , Caderinas/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Integrina beta1/metabolismo , Microscopia de Fluorescência , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição TCF/metabolismo , Vimentina/genética , Vimentina/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a
10.
Am J Pathol ; 185(3): 679-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25572154

RESUMO

High-risk human papillomavirus (HPV) is a causative agent for an increasing subset of oropharyngeal squamous cell carcinomas (OPSCCs), and current evidence supports these tumors as having identifiable risk factors and improved response to therapy. However, the biochemical and molecular alterations underlying the pathobiology of HPV-associated OPSCC (designated HPV(+) OPSCC) remain unclear. Herein, we profile miRNA expression patterns in HPV(+) OPSCC to provide a more detailed understanding of pathologic molecular events and to identify biomarkers that may have applicability for early diagnosis, improved staging, and prognostic stratification. Differentially expressed miRNAs were identified in RNA isolated from an initial clinical cohort of HPV(+/-) OPSCC tumors by quantitative PCR-based miRNA profiling. This oncogenic miRNA panel was validated using miRNA sequencing and clinical data from The Cancer Genome Atlas and miRNA in situ hybridization. The HPV-associated oncogenic miRNA panel has potential utility in diagnosis and disease stratification and in mechanistic elucidation of molecular factors that contribute to OPSCC development, progression, and differential response to therapy.


Assuntos
Carcinoma de Células Escamosas/genética , MicroRNAs , Neoplasias Orofaríngeas/genética , Infecções por Papillomavirus/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Biologia Computacional , DNA Viral , Papillomavirus Humano 16 , Humanos , Pessoa de Meia-Idade , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia
11.
BMC Cancer ; 16: 204, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26964534

RESUMO

BACKGROUND: Breast cancer incidence and mortality vary significantly among different nations and racial groups. African nations have the highest breast cancer mortality rates in the world, even though the incidence rates are below those of many nations. Differences in disease progression suggest that aggressive breast tumors may harbor a unique molecular signature to promote disease progression. However, few studies have investigated the pathology and clinical markers expressed in breast tissue from regional African patient populations. METHODS: We collected 68 malignant and 89 non-cancerous samples from Kenyan breast tissue. To characterize the tumors from these patients, we constructed tissue microarrays (TMAs) from these tissues. Sections from these TMAs were stained and analyzed using immunohistochemistry to detect clinical breast cancer markers, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 receptor (HER2) status, Ki67, and immune cell markers. RESULTS: Thirty-three percent of the tumors were triple negative (ER-, PR-, HER2-), 59% were ER+, and almost all tumors analyzed were HER2-. Seven percent of the breast cancer patients were male, and 30% were <40 years old at diagnosis. Cancer tissue had increased immune cell infiltration with recruitment of CD163+ (M2 macrophage), CD25+ (regulatory T lymphocyte), and CD4+ (T helper) cells compared to non-cancer tissue. CONCLUSIONS: We identified clinical biomarkers that may assist in identifying therapy strategies for breast cancer patients in western Kenya. Estrogen receptor status in particular should lead initial treatment strategies in these breast cancer patients. Increased CD25 expression suggests a need for additional treatment strategies designed to overcome immune suppression by CD25+ cells in order to promote the antitumor activity of CD8+ cytotoxic T cells.


Assuntos
Biomarcadores Tumorais/genética , Proliferação de Células/genética , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/patologia , Idoso , População Negra/genética , Feminino , Humanos , Imuno-Histoquímica , Quênia , Pessoa de Meia-Idade , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Linfócitos T Citotóxicos/imunologia , Análise Serial de Tecidos , Neoplasias de Mama Triplo Negativas/genética
12.
J Biol Chem ; 288(1): 141-51, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23152495

RESUMO

Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear ß-catenin and enhanced ß-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling.


Assuntos
Regulação para Baixo , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Colágeno/metabolismo , Feminino , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Microscopia Eletrônica de Varredura/métodos , Mutação , Metástase Neoplásica , Ratos , Transdução de Sinais , Frações Subcelulares/metabolismo , Proteínas Wnt/metabolismo
13.
Biol Chem ; 395(10): 1221-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25205731

RESUMO

Mucin16 [MUC16/cancer antigen 125 (CA-125)], a high-molecular-weight glycoprotein expressed on the ovarian tumor cell surface, potentiates metastasis via selective binding to mesothelin on peritoneal mesothelial cells. Shed MUC16/CA-125 is detectable in sera from ovarian cancer patients. We investigated the potential role of membrane type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane collagenase highly expressed in ovarian cancer cells, in MUC16/CA-125 ectodomain shedding. An inverse correlation between MT1-MMP and MUC16 immunoreactivity was observed in human ovarian tumors and cells. Further, when MUC16-expressing OVCA433 cells were engineered to overexpress MT1-MMP, surface expression of MUC16/CA-125 was lost, whereas cells expressing the inactive E240A mutant retained surface MUC16/CA-125. As a functional consequence, decreased adhesion of cells expressing catalytically active MT1-MMP to three-dimensional meso-mimetic cultures and intact ex vivo peritoneal tissue explants was observed. Nevertheless, meso-mimetic invasion is enhanced in MT1-MMP-expressing cells. Together, these data support a model wherein acquisition of catalytically active MT1-MMP expression in ovarian cancer cells induces MUC16/CA-125 ectodomain shedding, reducing adhesion to meso-mimetic cultures and to intact peritoneal explants. However, proteolytic clearing of MUC16/CA-125, catalyzed by MT1-MMP, may then expose integrins for high-affinity cell binding to peritoneal tissues, thereby anchoring metastatic lesions for subsequent proliferation within the collagen-rich sub-mesothelial matrix.


Assuntos
Antígeno Ca-125/metabolismo , Adesão Celular/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/metabolismo , Cavidade Peritoneal/patologia , Animais , Antígeno Ca-125/genética , Linhagem Celular Tumoral , Feminino , Humanos , Metaloproteinase 14 da Matriz/genética , Proteínas de Membrana/genética , Mesotelina , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Transplante de Neoplasias , Neoplasias Mesoteliais/patologia
14.
Nat Cell Biol ; 9(8): 893-904, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17618273

RESUMO

Invasive cell migration through tissue barriers requires pericellular remodelling of extracellular matrix (ECM) executed by cell-surface proteases, particularly membrane-type-1 matrix metalloproteinase (MT1-MMP/MMP-14). Using time-resolved multimodal microscopy, we show how invasive HT-1080 fibrosarcoma and MDA-MB-231 breast cancer cells coordinate mechanotransduction and fibrillar collagen remodelling by segregating the anterior force-generating leading edge containing beta1 integrin, MT1-MMP and F-actin from a posterior proteolytic zone executing fibre breakdown. During forward movement, sterically impeding fibres are selectively realigned into microtracks of single-cell calibre. Microtracks become expanded by multiple following cells by means of the large-scale degradation of lateral ECM interfaces, ultimately prompting transition towards collective invasion similar to that in vivo. Both ECM track widening and transition to multicellular invasion are dependent on MT1-MMP-mediated collagenolysis, shown by broad-spectrum protease inhibition and RNA interference. Thus, invasive migration and proteolytic ECM remodelling are interdependent processes that control tissue micropatterning and macropatterning and, consequently, individual and collective cell migration.


Assuntos
Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica , Actinas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Forma Celular , Colágeno/metabolismo , Feminino , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Humanos , Integrina beta1/metabolismo , Metaloproteinase 14 da Matriz/genética , Microscopia/métodos , Inibidores de Proteases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
15.
Sensors (Basel) ; 14(10): 18526-42, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25299952

RESUMO

Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.


Assuntos
Composição Corporal , Imageamento por Ressonância Magnética , Obesidade/diagnóstico , Tomografia Computadorizada por Raios X , Absorciometria de Fóton , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Humanos , Camundongos , Obesidade/metabolismo , Obesidade/fisiopatologia
16.
J Biol Chem ; 287(13): 9792-9803, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22315226

RESUMO

Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.


Assuntos
Antígenos CD/biossíntese , Moléculas de Adesão Celular/biossíntese , Movimento Celular , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias Ovarianas/metabolismo , Antígenos CD/genética , Antígenos de Neoplasias , Antineoplásicos/farmacologia , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Feminino , Humanos , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Junções Intercelulares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Mutação , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Pseudópodes/genética , Pseudópodes/metabolismo , Pseudópodes/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Regulação para Cima
17.
Biochem J ; 443(2): 339-53, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22452816

RESUMO

The current literature fully supports HPV (human papillomavirus)-associated OPSCC (oropharyngeal squamous cell carcinoma) as a unique clinical entity. It affects an unambiguous patient population with defined risk factors, has a genetic expression pattern more similar to cervical squamous cell carcinoma than non-HPV-associated HNSCC (head and neck squamous cell carcinoma), and may warrant divergent clinical management compared with HNSCC associated with traditional risk factors. However, a detailed understanding of the molecular mechanisms driving these differences and the ability to exploit this knowledge to improve clinical management of OPSCC has not yet come to fruition. The present review summarizes the aetiology of HPV-positive (HPV+) OPSCC and provides a detailed overview of HPV virology and molecular pathogenesis relevant to infection of oropharyngeal tissues. Methods of detection and differential gene expression analyses are also summarized. Future research into mechanisms that mediate tropism of HPV to oropharyngeal tissues, improved detection strategies and the pathophysiological significance of altered gene and microRNA expression profiles is warranted.


Assuntos
Carcinoma de Células Escamosas/virologia , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/complicações , Animais , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Neoplasias Orofaríngeas/genética , Infecções por Papillomavirus/genética
18.
Biomaterials ; 297: 122110, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062214

RESUMO

Obesity has been linked with numerous health issues as well as an increased risk of breast cancer. Although effects of direct obesity in patient outcomes is widely studied, effects of exposure to obesity-related systemic influences in utero have been overlooked. In this study, we investigated the effect of multigenerational obesity on epithelial cell migration and invasion using decellularized breast tissues explanted from normal female mouse pups from a diet induced multigenerational obesity mouse model. We first studied the effect of multigenerational diet on the mechanical properties, adipocyte size, and collagen structure of these mouse breast tissues, and then, examined the migration and invasion behavior of normal (KTB-21) and cancerous (MDA-MB-231) human mammary epithelial cells on the decellularized matrices from each diet group. Breast tissues of mice whose dams had been fed with high-fat diet exhibited larger adipocytes and thicker and curvier collagen fibers, but only slightly elevated elastic modulus and inflammatory cytokine levels. MDA-MB-231 cancer cell motility and invasion were significantly greater on the decellularized matrices from mice whose dams were fed with high-fat diet. A similar trend was observed with normal KTB-21 cells. Our results showed that the collagen curvature was the dominating factor on this enhanced motility and stretching the matrices to equalize the collagen fiber linearity of the matrices ameliorated the observed increase in cell migration and invasion in the mice that were exposed to a high-fat diet in utero. Previous studies indicated an increase in serum leptin concentration for those children born to an obese mother. We generated extracellular matrices using primary fibroblasts exposed to various concentrations of leptin. This produced curvier ECM and increased breast cancer cell motility for cells seeded on the decellularized ECM generated with increasing leptin concentration. Our study shows that exposure to obesity in utero is influential in determining the extracellular matrix structure, and that the resultant change in collagen curvature is a critical factor in regulating the migration and invasion of breast cancer cells.


Assuntos
Neoplasias da Mama , Obesidade Materna , Criança , Feminino , Humanos , Camundongos , Gravidez , Animais , Leptina , Linhagem Celular Tumoral , Colágeno/farmacologia , Matriz Extracelular , Células Epiteliais , Obesidade , Fenótipo
19.
J Exp Clin Cancer Res ; 42(1): 165, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438818

RESUMO

BACKGROUND: The majority of women with epithelial ovarian cancer (OvCa) are diagnosed with metastatic disease, resulting in a poor 5-year survival of 31%. Obesity is a recognized non-infectious pandemic that increases OvCa incidence, enhances metastatic success and reduces survival. We have previously demonstrated a link between obesity and OvCa metastatic success in a diet-induced obesity mouse model wherein a significantly enhanced tumor burden was associated with a decreased M1/M2 tumor-associated macrophage ratio (Liu Y et al. Can, Res. 2015; 75:5046-57). METHODS: The objective of this study was to use pre-clinical murine models of diet-induced obesity to evaluate the effect of a high fat diet (HFD) on response to standard of care chemotherapy and to assess obesity-associated changes in the tumor microenvironment. Archived tumor tissues from ovarian cancer patients of defined body mass index (BMI) were also evaluated using multiplexed immunofluorescence analysis of immune markers. RESULTS: We observed a significantly diminished response to standard of care paclitaxel/carboplatin chemotherapy in HFD mice relative to low fat diet (LFD) controls. A corresponding decrease in the M1/M2 macrophage ratio and enhanced tumor fibrosis were observed both in murine DIO studies and in human tumors from women with BMI > 30. CONCLUSIONS: Our data suggest that the reported negative impact of obesity on OvCa patient survival may be due in part to the effect of the altered M1/M2 tumor-associated macrophage ratio and enhanced fibrosis on chemosensitivity. These data demonstrate a contribution of host obesity to ovarian tumor progression and therapeutic response and support future combination strategies targeting macrophage polarization and/or fibrosis in the obese host.


Assuntos
Neoplasias Ovarianas , Padrão de Cuidado , Humanos , Feminino , Animais , Camundongos , Microambiente Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Obesidade/complicações , Carcinoma Epitelial do Ovário
20.
Cell Metab ; 35(10): 1688-1703.e10, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37793345

RESUMO

Metastasis causes breast cancer-related mortality. Tumor-infiltrating neutrophils (TINs) inflict immunosuppression and promote metastasis. Therapeutic debilitation of TINs may enhance immunotherapy, yet it remains a challenge to identify therapeutic targets highly expressed and functionally essential in TINs but under-expressed in extra-tumoral neutrophils. Here, using single-cell RNA sequencing to compare TINs and circulating neutrophils in murine mammary tumor models, we identified aconitate decarboxylase 1 (Acod1) as the most upregulated metabolic enzyme in mouse TINs and validated high Acod1 expression in human TINs. Activated through the GM-CSF-JAK/STAT5-C/EBPß pathway, Acod1 produces itaconate, which mediates Nrf2-dependent defense against ferroptosis and upholds the persistence of TINs. Acod1 ablation abates TIN infiltration, constrains metastasis (but not primary tumors), bolsters antitumor T cell immunity, and boosts the efficacy of immune checkpoint blockade. Our findings reveal how TINs escape from ferroptosis through the Acod1-dependent immunometabolism switch and establish Acod1 as a target to offset immunosuppression and improve immunotherapy against metastasis.


Assuntos
Neoplasias da Mama , Carboxiliases , Ferroptose , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/metabolismo , Neutrófilos , Carboxiliases/metabolismo , Melanoma Maligno Cutâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA