Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Reprod ; 37(8): 1760-1773, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35700449

RESUMO

STUDY QUESTION: What is the role of transcriptional-enhanced associate (TEA) domain family member 4 (TEAD4) in trophectoderm (TE) differentiation during human embryo preimplantation development in comparison to mouse? SUMMARY ANSWER: TEAD4 regulates TE lineage differentiation in the human preimplantation embryo acting upstream of caudal-type homeobox protein 2 (CDX2), but in contrast to the mouse in a GATA-binding protein 3 (GATA3)-independent manner. WHAT IS KNOWN ALREADY: Tead4 is one of the earliest transcription factors expressed during mouse embryo preimplantation development and is required for the expression of TE-associated genes. Functional knock-out studies in mouse, inactivating Tead4 by site-specific recombination, have shown that Tead4-targeted embryos have compromised development and expression of the TE-specific Cdx2 and Gata3 is downregulated. Cdx2 and Gata3 act in parallel pathways downstream of Tead4 to induce successful TE differentiation. Downstream loss of Cdx2 expression, compromises TE differentiation and subsequent blastocoel formation and leads to the ectopic expression of inner cell mass (ICM) genes, including POU Class 5 homeobox 1 (Pou5f1) and SRY-box transcription factor (Sox2). Cdx2 is a more potent regulator of TE fate in mouse as loss of Cdx2 expression induces more severe phenotypes compared with loss of Gata3 expression. The role of TEAD4 and its downstream effectors during human preimplantation embryo development has not been investigated yet. STUDY DESIGN, SIZE, DURATION: The clustered regularly interspaced short palindromic repeats-clustered regularly interspaced short palindromic repeats (CRISPR)-associated genes (CRISPR-Cas9) system was first introduced in pronuclei (PN)-stage mouse zygotes aiming to identify a guide RNA (gRNA), yielding high editing efficiency and effective disruption of the Tead4 locus. Three guides were tested (gRNA1-3), each time targeting a distinct region of Exon 2 of Tead4. The effects of targeting on developmental capacity were studied in Tead4-targeted embryos (n = 164-summarized data from gRNA1-3) and were compared with two control groups; sham-injected embryos (n = 26) and non-injected media-control embryos (n = 51). The editing efficiency was determined by next-generation sequencing (NGS). In total, n = 55 (summarized data from gRNA1-3) targeted mouse embryos were analysed by NGS. Immunofluorescence analysis to confirm successful targeting by gRNA1 was performed in Tead4-targeted embryos, and non-injected media-control embryos. The downregulation of secondary TE-associated markers Cdx2 and Gata3 was used as an indirect confirmation of successful Tead4-targeting (previously shown to be expressed downstream of Tead4). Additional groups of gRNA1 Tead4-targeted (n = 45) and media control (n = 36) embryos were cultured for an extended period of 8.5 days, to further assess the developmental capacity of the Tead4-targeted group to develop beyond implantation stages. Following the mouse investigation, human metaphase-II (MII) oocytes obtained by IVM were microinjected with gRNA-Cas9 during ICSI (n = 74) to target TEAD4 or used as media-control (n = 33). The editing efficiency was successfully assessed in n = 25 TEAD4-targeted human embryos. Finally, immunofluorescence analysis for TEAD4, CDX2, GATA3 and the ICM marker SOX2 was performed in TEAD4-targeted (n = 10) and non-injected media-control embryos (n = 29). PARTICIPANTS/MATERIALS, SETTING, METHODS: A ribonucleoprotein complex consisting of a gRNA-Cas9 mixture, designed to target Exon 2 of Tead4/TEAD4, was microinjected in mouse PN stage zygotes or human IVM MII oocytes along with sperm. Generated embryos were cultured in vitro for 4 days in mouse or 6.5 days in human. In mouse, an additional group of Tead4-targeted and media-control embryos was cultured in vitro for an extended period of 8.5 days. Embryonic development and morphology were assessed daily, during culture in vitro of mouse and human embryos and was followed by a detailed scoring at late blastocyst stage. Targeting efficiency following gRNA-Cas9 introduction was assessed via immunostaining and NGS analysis. MAIN RESULTS AND THE ROLE OF CHANCE: NGS analysis of the Tead4-targeted locus revealed very high editing efficiencies for all three guides, with 100% of the mouse embryos (55 out of 55) carrying genetic modifications resulting from CRISPR-Cas9 genome editing. More specifically, 65.22% (15 out 23) of the PN zygotes microinjected with gRNA1-Cas9, which exhibited the highest efficiency, carried exclusively mutated alleles. The developmental capacity of targeted embryos was significantly reduced (data from gRNA1), as 44.17% of the embryos arrested at the morula stage (2.5 days post coitum), coincident with the initiation of TE lineage differentiation, compared with 8.51% in control and 12.50% in sham control groups. High-quality blastocyst formation rates (Grade 3) were 8.97% in the gRNA1-targeted group, compared with 87.23% in the media-control and 87.50% in the sham group. Immunofluorescence analysis in targeted embryos confirmed downregulation of Tead4, Cdx2, and Gata3 expression, which resulted from successful targeting of the Tead4 locus. Tead4-targeted mouse embryos stained positive for the ICM markers Pou5f1 and Sox2, indicating that expression of ICM lineage markers is not affected. Tead4-targeted embryos were able to cavitate and form a blastocoel without being able to hatch. Extended embryo culture following zona pellucida removal, revealed that the targeted embryos can attach and form egg-cylinder-like structures in the absence of trophoblast giant cells. In human embryos, Exon 2 of TEAD4 was successfully targeted by CRISPR-Cas9 (n = 74). In total, 25 embryos from various developmental stages were analysed by NGS and 96.00% (24 out of 25) of the embryos carried genetic modifications because of gRNA-Cas9 editing. In the subgroup of the 24 edited embryos, 17 (70.83%) carried only mutant alleles and 11 out of these 17 (64.70%) carried exclusively frameshift mutations. Six out of 11 embryos reached the blastocyst stage. In contrast to mice, human-targeted embryos formed blastocysts at a rate (25.00%) that did not differ significantly from the control group (23.81%). However, blastocyst morphology and TE quality were significantly compromised following TEAD4-targeting, showing grade C TE scores, with TE containing very few cells. Immunofluorescence analysis of TEAD4-targeted embryos (n = 10) confirmed successful editing by the complete absence of TEAD4 and its downstream TE marker CDX2, but the embryos generated retained expression of GATA3, which is in contrast to what we have observed and has previously been reported in mouse. In this regard, our results indicate that GATA3 acts in parallel with TEAD4/CDX2 towards TE differentiation in human. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: CRISPR-Cas9 germline genome editing, in some cases, induces mosaic genotypes. These genotypes are a result of inefficient and delayed editing, and complicate the phenotypic analysis and developmental assessment of the injected embryos. We cannot exclude the possibility that the observed differences between mouse and human are the result of variable effects triggered by the culture conditions, which were however similar for both mouse and human embryos in this study. Furthermore, this study utilized human oocytes obtained by IVM, which may not fully recapitulate the developmental behaviour of in vivo matured oocytes. WIDER IMPLICATIONS OF THE FINDINGS: Elucidation of the evolutionary conservation of molecular mechanisms that regulate the differentiation and formation of the trophoblast lineage can give us fundamental insights into early implantation failure, which accounts for ∼15% of human conceptions. STUDY FUNDING/COMPETING INTEREST(S): The research was funded by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051516N), and Hercules funding (FWO.HMZ.2016.00.02.01) and Ghent University (BOF.BAS.2018.0018.01). G.C. is supported by FWO-Vlaanderen (Flemish fund for scientific research, Grant no. 11L8822N). A.B. is supported by FWO-Vlaanderen (Flemish fund for scientific research, Grant no. 1298722 N). We further thank Ferring Pharmaceuticals (Aalst, Belgium) for their unrestricted educational grant. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , RNA Guia de Cinetoplastídeos , Blastocisto/metabolismo , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/fisiologia , Feminino , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Humanos , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Gravidez , RNA Guia de Cinetoplastídeos/metabolismo , Sêmen/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Hum Reprod ; 36(5): 1242-1252, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609360

RESUMO

STUDY QUESTION: What is the role of POU class 5 homeobox 1 (POU5F1) in human preimplantation development and how does it compare with the mouse model? SUMMARY ANSWER: POU5F1 is required for successful development of mouse and human embryos to the blastocyst stage as knockout embryos exhibited a significantly lower blastocyst formation rate, accompanied by lack of inner cell mass (ICM) formation. WHAT IS KNOWN ALREADY: Clustered regularly interspaced short palindromic repeats-CRISPR associated genes (CRISPR-Cas9) has previously been used to examine the role of POU5F1 during human preimplantation development. The reported POU5F1-targeted blastocysts always retained POU5F1 expression in at least one cell, because of incomplete CRISPR-Cas9 editing. The question remains of whether the inability to obtain fully edited POU5F1-targeted blastocysts in human results from incomplete editing or the actual inability of these embryos to reach the blastocyst stage. STUDY DESIGN, SIZE, DURATION: The efficiency of CRISPR-Cas9 to induce targeted gene mutations was first optimized in the mouse model. Two CRISPR-Cas9 delivery methods were compared in the B6D2F1 strain: S-phase injection (zygote stage) (n = 135) versus metaphase II-phase (M-phase) injection (oocyte stage) (n = 23). Four control groups were included: non-injected media-control zygotes (n = 43)/oocytes (n = 48); sham-injected zygotes (n = 45)/oocytes (n = 47); Cas9-protein injected zygotes (n = 23); and Cas9 protein and scrambled guide RNA (gRNA)-injected zygotes (n = 27). Immunofluorescence analysis was performed in Pou5f1-targeted zygotes (n = 37), media control zygotes (n = 19), and sham-injected zygotes (n = 15). To assess the capacity of Pou5f1-null embryos to develop further in vitro, additional groups of Pou5f1-targeted zygotes (n = 29) and media control zygotes (n = 30) were cultured to postimplantation stages (8.5 dpf). Aiming to identify differences in developmental capacity of Pou5f1-null embryos attributed to strain variation, zygotes from a second mouse strain-B6CBA (n = 52) were targeted. Overall, the optimized methodology was applied in human oocytes following IVM (metaphase II stage) (n = 101). The control group consisted of intracytoplasmically sperm injected (ICSI) IVM oocytes (n = 33). Immunofluorescence analysis was performed in human CRISPR-injected (n = 10) and media control (n = 9) human embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS: A gRNA-Cas9 protein mixture targeting exon 2 of Pou5f1/POU5F1 was microinjected in mouse oocytes/zygotes or human IVM oocytes. Reconstructed embryos were cultured for 4 days (mouse) or 6.5 days (human) in sequential culture media. An additional group of mouse-targeted zygotes was cultured to postimplantation stages. Embryonic development was assessed daily, with detailed scoring at late blastocyst stage. Genomic editing was assessed by immunofluorescence analysis and next-generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: Genomic analysis in mouse revealed very high editing efficiencies with 95% of the S-Phase and 100% of the M-Phase embryos containing genetic modifications, of which 89.47% in the S-Phase and 84.21% in the M-Phase group were fully edited. The developmental capacity was significantly compromised as only 46.88% embryos in the S-Phase and 19.05% in the M-Phase group reached the blastocyst stage, compared to 86.36% in control M-Phase and 90.24% in control S-Phase groups, respectively. Immunofluorescence analysis confirmed the loss of Pou5f1 expression and downregulation of the primitive marker SRY-Box transcription factor (Sox17). Our experiments confirmed the requirement of Pou5f1 expression for blastocyst development in the second B6CBA strain. Altogether, our data obtained in mouse reveal that Pou5f1 expression is essential for development to the blastocyst stage. M-Phase injection in human IVM oocytes (n = 101) similarly resulted in 88.37% of the POU5F1-targeted embryos being successfully edited. The developmental capacity of generated embryos was compromised from the eight-cell stage onwards. Only 4.55% of the microinjected embryos reached the late blastocyst stage and the embryos exhibited complete absence of ICM and an irregular trophectoderm cell layer. Loss of POU5F1 expression resulted in absence of SOX17 expression, as in mouse. Interestingly, genetic mosaicism was eliminated in a subset of targeted human embryos (9 out of 38), three of which developed into blastocysts. LIMITATIONS, REASONS FOR CAUTION: One of the major hurdles of CRISPR-Cas9 germline genome editing is the occurrence of mosaicism, which may complicate phenotypic analysis and interpretation of developmental behavior of the injected embryos. Furthermore, in this study, spare IVM human oocytes were used, which may not recapitulate the developmental behavior of in vivo matured oocytes. WIDER IMPLICATIONS OF THE FINDINGS: Comparison of developmental competency following CRISPR-Cas-mediated gene targeting in mouse and human may be influenced by the selected mouse strain. Gene targeting by CRISPR-Cas9 is subject to variable targeting efficiencies. Therefore, striving to reduce mosaicism can provide novel molecular insights into mouse and human embryogenesis. STUDY FUNDING/COMPETING INTEREST(S): The research was funded by the Ghent University Hospital and Ghent University and supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051516N), and Hercules funding (FWO.HMZ.2016.00.02.01). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Maturação in Vitro de Oócitos , Animais , Blastocisto , Sistemas CRISPR-Cas , Desenvolvimento Embrionário/genética , Feminino , Genes Homeobox , Humanos , Masculino , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Gravidez
3.
Hum Reprod ; 35(7): 1562-1577, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32613230

RESUMO

STUDY QUESTION: Can pronuclear transfer (PNT) or maternal spindle transfer (ST) be applied to overcome poor embryo development associated with advanced maternal age or early embryo arrest in a mouse model? SUMMARY ANSWER: Both PNT and ST may have the potential to restore embryonic developmental potential in a mouse model of reproductive ageing and embryonic developmental arrest. WHAT IS KNOWN ALREADY: Germline nuclear transfer (NT) techniques, such as PNT and ST, are currently being applied in humans to prevent the transmission of mitochondrial diseases. Yet, there is also growing interest in the translational use of NT for treating infertility and improving IVF outcomes. Nevertheless, direct scientific evidence to support such applications is currently lacking. Moreover, it remains unclear which infertility indications may benefit from these novel assisted reproductive technologies. STUDY DESIGN, SIZE, DURATION: We applied two mouse models to investigate the potential of germline NT for overcoming infertility. Firstly, we used a model of female reproductive ageing (B6D2F1 mice, n = 155), with ages ranging from 6 to 8 weeks (young), 56 (aged) to 70 weeks (very-aged), corresponding to a maternal age of <30, ∼36 and ∼45 years in humans, respectively. Secondly, we used NZB/OlaHsd female mice (7-14 weeks, n = 107), as a model of early embryo arrest. This mouse strain exhibits a high degree of two-cell block. Metaphase II (MII) oocytes and zygotes were retrieved following superovulation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovarian reserve was assessed by histological analysis in the reproductive-aged mice. Mitochondrial membrane potential (△Ψm) was measured by JC-1 staining in MII oocytes, while spindle-chromosomal morphology was examined by confocal microscopy. Reciprocal ST and PNT were performed by transferring the meiotic spindle or pronuclei (PN) from unfertilised or fertilised oocytes (after ICSI) to enucleated oocytes or zygotes between aged or very-aged and young mice. Similarly, NT was also conducted between NZB/OlaHsd (embryo arrest) and B6D2F1 (non-arrest control) mice. Finally, the effect of cytoplasmic transfer (CT) was examined by injecting a small volume (∼5%) of cytoplasm from the oocytes/zygotes of young (B6D2F1) mice to the oocytes/zygotes of aged or very-aged mice or embryo-arrest mice. Overall, embryonic developmental rates of the reconstituted PNT (n = 572), ST (n = 633) and CT (n = 336) embryos were assessed to evaluate the efficiency of these techniques. Finally, chromosomal profiles of individual NT-generated blastocysts were evaluated using next generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to young mice, the ovarian reserve in aged and very-aged mice was severely diminished, reflected by a lower number of ovarian follicles and a reduced number of ovulated oocytes (P < 0.001). Furthermore, we reveal that the average △Ψm in both aged and very-aged mouse oocytes was significantly reduced compared to young mouse oocytes (P < 0.001). In contrast, the average △Ψm in ST-reconstructed oocytes (very-aged spindle and young cytoplast) was improved in comparison to very-aged mouse oocytes (P < 0.001). In addition, MII oocytes from aged and very-aged mice exhibited a higher rate of abnormalities in spindle assembly (P < 0.05), and significantly lower fertilisation (60.7% and 45.3%) and blastocyst formation rates (51.4% and 38.5%) following ICSI compared to young mouse oocytes (89.7% and 87.3%) (P < 0.001). Remarkably, PNT from zygotes obtained from aged or very-aged mice to young counterparts significantly improved blastocyst formation rates (74.6% and 69.2%, respectively) (P < 0.05). Similarly, both fertilisation and blastocyst rates were significantly increased after ST between aged and young mice followed by ICSI (P < 0.05). However, we observed no improvement in embryo development rates when performing ST from very-aged to young mouse oocytes following ICSI (P > 0.05). In the second series of experiments, we primarily confirmed that the majority (61.8%) of in vivo zygotes obtained from NZB/OlaHsd mice displayed two-cell block during in vitro culture, coinciding with a significantly reduced blastocyst formation rate compared to the B6D2F1 mice (13.5% vs. 90.7%; P < 0.001). Notably, following the transfer of PN from the embryo-arrest (NZB/OlaHsd) zygotes to enucleated non-arrest (B6D2F1) counterparts, most reconstructed zygotes developed beyond the two-cell stage, leading to a significantly increased blastocyst formation rate (89.7%) (P < 0.001). Similar findings were obtained after implementing ST between NZB/OlaHsd and B6D2F1 mice, followed by ICSI. Conversely, the use of CT did not improve embryo development in reproductive-age mice nor in the embryo-arrest mouse model (P > 0.05). Surprisingly, chromosomal analysis revealed that euploidy rates in PNT and ST blastocysts generated following the transfer of very-aged PN to young cytoplasts and very-aged spindles to young cytoplasts were comparable to ICSI controls (with young mouse oocytes). A high euploidy rate was also observed in the blastocysts obtained from either PNT or ST between young mice. Conversely, the transfer of young PN and young spindles into very-aged cytoplasts led to a higher rate of chromosomal abnormalities in both PNT and ST blastocysts. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The limited number of blastocysts analysed warrants careful interpretation. Furthermore, our observations should be cautiously extrapolated to humans given the inherent differences between mice and women in regards to various biological processes, including centrosome inheritance. The findings suggest that ST or PNT procedures may be able to avoid aneuploidies generated during embryo development, but they are not likely to correct aneuploidies already present in some aged MII oocytes. WIDER IMPLICATIONS OF THE FINDINGS: To our knowledge, this is the first study to evaluate the potential of PNT and ST in the context of advanced maternal age and embryonic developmental arrest in a mouse model. Our data suggest that PNT, and to a lesser extent ST, may represent a novel reproductive strategy to restore embryo development for these indications. STUDY FUNDING/COMPETING INTEREST(S): M.T. is supported by grants from the China Scholarship Council (CSC) (Grant no. 201506160059) and the Special Research Fund from Ghent University (Bijzonder Onderzoeksfonds, BOF) (Grant no. 01SC2916 and no. 01SC9518). This research is also supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051017N, G051516N and G1507816N). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Desenvolvimento Embrionário , Técnicas de Transferência Nuclear , Animais , Blastocisto , China , Feminino , Idade Materna , Camundongos , Oócitos
4.
Mol Hum Reprod ; 25(12): 797-810, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651030

RESUMO

Prevention of mitochondrial DNA (mtDNA) diseases may currently be possible using germline nuclear transfer (NT). However, scientific evidence to compare efficiency of different NT techniques to overcome mtDNA diseases is lacking. Here, we performed four types of NT, including first or second polar body transfer (PB1/2T), maternal spindle transfer (ST) and pronuclear transfer (PNT), using NZB/OlaHsd and B6D2F1 mouse models. Embryo development was assessed following NT, and mtDNA carry-over levels were measured by next generation sequencing (NGS). Moreover, we explored two novel protocols (PB2T-a and PB2T-b) to optimize PB2T using mouse and human oocytes. Chromosomal profiles of NT-generated blastocysts were evaluated using NGS. In mouse, our findings reveal that only PB2T-b successfully leads to blastocysts. There were comparable blastocyst rates among PB1T, PB2T-b, ST and PNT embryos. Furthermore, PB1T and PB2T-b had lower mtDNA carry-over levels than ST and PNT. After extrapolation of novel PB2T-b to human in vitro matured (IVM) oocytes and in vivo matured oocytes with smooth endoplasmic reticulum aggregate (SERa) oocytes, the reconstituted embryos successfully developed to blastocysts at a comparable rate to ICSI controls. PB2T-b embryos generated from IVM oocytes showed a similar euploidy rate to ICSI controls. Nevertheless, our mouse model with non-mutated mtDNAs is different from a mixture of pathogenic and non-pathogenic mtDNAs in a human scenario. Novel PB2T-b requires further optimization to improve blastocyst rates in human. Although more work is required to elucidate efficiency and safety of NT, our study suggests that PBT may have the potential to prevent mtDNA disease transmission.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/prevenção & controle , Terapia de Substituição Mitocondrial/métodos , Técnicas de Transferência Nuclear , Corpos Polares/transplante , Animais , Blastocisto/citologia , Retículo Endoplasmático Liso/fisiologia , Humanos , Camundongos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Oócitos/crescimento & desenvolvimento , Oócitos/transplante
5.
Mol Hum Reprod ; 24(4): 173-184, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29471503

RESUMO

The derivation of gametes from patient-specific pluripotent stem cells may provide new perspectives for genetic parenthood for patients currently facing sterility. We use current data to assess the gamete differentiation potential of patient-specific pluripotent stem cells and to determine which reprogramming strategy holds the greatest promise for future clinical applications. First, we compare the two best established somatic cell reprogramming strategies: the production of induced pluripotent stem cells (iPSC) and somatic cell nuclear transfer followed by embryonic stem cell derivation (SCNT-ESC). Recent reports have indicated that these stem cells, though displaying a similar pluripotency potential, show important differences at the epigenomic level, which may have repercussions on their applicability. By comparing data on the genetic and epigenetic stability of these cell types during derivation and in-vitro culture, we assess the reprogramming efficiency of both technologies and possible effects on the subsequent differentiation potential of these cells. Moreover, we discuss possible implications of mitochondrial heteroplasmy. We also address the ethical aspects of both cell types, as well as the safety considerations associated with clinical applications using these cells, e.g. the known genomic instability of human PSCs during long-term culture. Secondly, we discuss the role of the stem cell pluripotency state in germ cell differentiation. In mice, success in germ cell development from pluripotent stem cells could only be achieved when starting from a naive state of pluripotency. It remains to be investigated if the naive state is also crucial for germ cell differentiation in human cells and to what extent human naive pluripotency resembles the naive state in mouse.


Assuntos
Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Reprogramação Celular/fisiologia , Epigênese Genética/genética , Epigenômica , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Técnicas de Transferência Nuclear
6.
Accid Anal Prev ; 23(4): 275-85, 1991 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1883467

RESUMO

Considerable attention is still given to developing and using alternate methods for determining exposure for calculating highway accident rates. A quasi-induced method of measuring exposure developed in the late 1960s is reexamined and found to be promising for determining relative accident involvement rates. A new empirical investigation is offered as the first step in verifying that the characteristics of the "innocent victim" in two-vehicle highway accidents represent a random sample of the driver-vehicle combinations present on the highway system under specified conditions. Quasi-induced exposure estimates are shown to be, at a minimum, consistent and reproducible.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Condução de Veículo/estatística & dados numéricos , Adolescente , Adulto , Idoso , Análise de Variância , Feminino , Humanos , Masculino , Michigan , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA