Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335099

RESUMO

Testing the function of therapeutic compounds in plants is an important component of agricultural research. Foliar and soil-drench methods are routine but have drawbacks, including variable uptake and the environmental breakdown of tested molecules. Trunk injection of trees is well-established, but most methods for this require expensive, proprietary equipment. To screen various treatments for Huanglongbing, a simple, low-cost method to deliver these compounds to the vascular tissue of small greenhouse-grown citrus trees infected with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) or infested with the phloem-feeding CLas insect vector Diaphorina citri Kuwayama (D. citri) is needed. To meet these screening requirements, a direct plant infusion (DPI) device was designed that connects to the plant's trunk. The device is made using a nylon-based 3D-printing system and easily obtainable auxiliary components. The compound uptake efficacy of this device was tested in citrus plants using the fluorescent marker 5,6-carboxyfluorescein-diacetate. Uniform compound distribution of the marker throughout the plants was routinely observed. Furthermore, this device was used to deliver antimicrobial and insecticidal molecules to determine their effects on CLas and D. citri respectively. The aminoglycoside antibiotic streptomycin was delivered into CLas-infected citrus plants using the device, which resulted in a reduction in the CLas titer from 2 weeks to 4 weeks post treatment. Delivering the neonicotinoid insecticide imidacloprid into D. citri-infested citrus plants resulted in a significant increase in psyllid mortality after 7 days. These results suggest that this DPI device represents a useful system for delivering molecules into plants for testing and facilitate research and screening purposes.


Assuntos
Citrus , Hemípteros , Inseticidas , Rhizobiaceae , Animais , Hemípteros/microbiologia , Doenças das Plantas/microbiologia
2.
Phytochemistry ; 63(2): 177-83, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12711139

RESUMO

Grapefruit, Citrus paradisi, were injured, inoculated with Penicillium digitatum and incubated under conditions favourable for the accumulation of defence related material. Histochemical examination revealed that tissues adjacent to inoculated injuries contained phloroglucinol-HCl (PG-HCl) reactive material. Solvent washed cell wall preparations of intact and injured-inoculated peel were further purified using a mixture of cell wall degrading enzymes. Samples from injured inoculated tissue contained PG-HCl reactive globular material in addition to the fragments of xylem and cuticle found in controls. The principal chemical moieties of the material that accumulates in grapefruit injuries during wound-healing were studied by solid state 13C cross-polarization magic angle spinning NMR. A complete assignment of the NMR signals was made. From the analysis evidence was found that cellulose and hemicellulose are the biopolymers present in the intact peel samples, in addition, relevant quantities of cutin were found in the residues of enzyme digest. The NMR difference spectrum intact- wounded peels showed resonances which were attributed to all major functional groups of the aromatic-aliphatic suberin polyester of new material produced by the wounds. Information on the latter polyester was obtained by analyzing the T(1)rho (1H) relaxation.


Assuntos
Citrus paradisi/química , Floroglucinol/química , Isótopos de Carbono , Celulose/análise , Celulose/metabolismo , Cromatografia em Camada Fina , Citrus paradisi/metabolismo , Frutas/química , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/metabolismo , Histocitoquímica/métodos , Lipídeos , Lipídeos de Membrana/química , Lipídeos de Membrana/isolamento & purificação , Lipídeos de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Penicillium/química , Floroglucinol/metabolismo , Fenômenos Fisiológicos Vegetais , Estresse Mecânico
3.
Plant Dis ; 86(4): 345-348, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30818705

RESUMO

Susceptibility of stored sweetpotato roots (cvs. Beauregard and Hernandez) to Rhizopus soft rot caused by Rhizopus stolonifer was tested at 4- to 6-week intervals over a storage period of 335 days in 1998-1999 (year 1) and 1999-2000 (year 2). In each experiment, roots were wounded by four methods (puncture, bruise, broken, and scrape), inoculated with freshly harvested spores from 4- to 10-day-old cultures, and compared with a nonwounded but inoculated control for their susceptibility to decay. Roots were totally resistant to infection after harvest for 60 days in year 1 and 30 days in year 2. The bruise wound type was most commonly associated with infection, with disease incidence peaking 100 and 175 days after harvest in years 1 and 2, respectively. Inoculation by the puncture method followed a similar pattern in Hernandez but was ineffective in Beauregard. Following the peak in disease incidence at 100 or 175 days, susceptibility of roots declined to levels comparable to that of freshly harvested roots. This period of heightened susceptibility was longer in Hernandez than in Beauregard. The effects of injury types broken and scrape were more variable and did not show the same trend in both years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA