Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(35): 9916-21, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27516548

RESUMO

The human human ether-à-go-go-related gene (hERG) potassium channel plays a critical role in the repolarization of the cardiac action potential. Changes in hERG channel function underlie long QT syndrome (LQTS) and are associated with cardiac arrhythmias and sudden death. A striking feature of this channel and KCNH channels in general is the presence of an N-terminal Per-Arnt-Sim (PAS) domain. In other proteins, PAS domains bind ligands and modulate effector domains. However, the PAS domains of KCNH channels are orphan receptors. We have uncovered a family of positive modulators of hERG that specifically bind to the PAS domain. We generated two single-chain variable fragments (scFvs) that recognize different epitopes on the PAS domain. Both antibodies increase the rate of deactivation but have different effects on channel activation and inactivation. Importantly, we show that both antibodies, on binding to the PAS domain, increase the total amount of current that permeates the channel during a ventricular action potential and significantly reduce the action potential duration recorded in human cardiomyocytes. Overall, these molecules constitute a previously unidentified class of positive modulators and establish that allosteric modulation of hERG channel function through ligand binding to the PAS domain can be attained.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Anticorpos de Cadeia Única/farmacologia , Animais , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Células Cultivadas , Galinhas , Estimulação Elétrica/métodos , Epitopos/genética , Epitopos/imunologia , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/imunologia , Células HEK293 , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Anticorpos de Cadeia Única/imunologia
2.
J Comput Chem ; 38(16): 1472-1478, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28211063

RESUMO

We used targeted molecular dynamics, informed by experimentally determined inter-atomic distances defining the pore region of open and closed states of the KvAP voltage-gated potassium channel, to generate a gating pathway of the pore domain in the absence of the voltage-sensing domains. We then performed umbrella sampling simulations along this pathway to calculate a potential of mean force that describes the free energy landscape connecting the closed and open conformations of the pore domain. The resulting energetic landscape displays three minima, corresponding to stable open, closed, and intermediate conformations with roughly similar stabilities. We found that the extent of hydration of the interior of the pore domain could influence the free energy landscape for pore opening/closing. © 2017 Wiley Periodicals, Inc.

3.
J Biol Chem ; 287(47): 40091-8, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23019337

RESUMO

Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.


Assuntos
Ativação do Canal Iônico/fisiologia , Lipídeos de Membrana/química , Membranas Artificiais , Simulação de Dinâmica Molecular , Canais de Potássio/química , Células Procarióticas/química , Elementos da Série dos Lantanídeos/química , Lipídeos de Membrana/metabolismo , Canais de Potássio/metabolismo , Células Procarióticas/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA