Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(6): 1174-1179, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358374

RESUMO

Past greenhouse periods with elevated atmospheric CO2 were characterized by globally warmer sea-surface temperatures (SST). However, the extent to which the high latitudes warmed to a greater degree than the tropics (polar amplification) remains poorly constrained, in particular because there are only a few temperature reconstructions from the tropics. Consequently, the relationship between increased CO2, the degree of tropical warming, and the resulting latitudinal SST gradient is not well known. Here, we present coupled clumped isotope (Δ47)-Mg/Ca measurements of foraminifera from a set of globally distributed sites in the tropics and midlatitudes. Δ47 is insensitive to seawater chemistry and therefore provides a robust constraint on tropical SST. Crucially, coupling these data with Mg/Ca measurements allows the precise reconstruction of Mg/Casw throughout the Eocene, enabling the reinterpretation of all planktonic foraminifera Mg/Ca data. The combined dataset constrains the range in Eocene tropical SST to 30-36 °C (from sites in all basins). We compare these accurate tropical SST to deep-ocean temperatures, serving as a minimum constraint on high-latitude SST. This results in a robust conservative reconstruction of the early Eocene latitudinal gradient, which was reduced by at least 32 ± 10% compared with present day, demonstrating greater polar amplification than captured by most climate models.

3.
Sci Adv ; 8(11): eabg1025, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294237

RESUMO

The Paleocene-Eocene Thermal Maximum (PETM) is recognized by a major negative carbon isotope (δ13C) excursion (CIE) signifying an injection of isotopically light carbon into exogenic reservoirs, the mass, source, and tempo of which continue to be debated. Evidence of a transient precursor carbon release(s) has been identified in a few localities, although it remains equivocal whether there is a global signal. Here, we present foraminiferal δ13C records from a marine continental margin section, which reveal a 1.0 to 1.5‰ negative pre-onset excursion (POE), and concomitant rise in sea surface temperature of at least 2°C and a decline in ocean pH. The recovery of both δ13C and pH before the CIE onset and apparent absence of a POE in deep-sea records suggests a rapid (< ocean mixing time scales) carbon release, followed by recovery driven by deep-sea mixing. Carbon released during the POE is therefore likely more similar to ongoing anthropogenic emissions in mass and rate than the main CIE.

4.
PLoS One ; 8(11): e81180, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348918

RESUMO

New coleoid cephalopods, assignable to the order Sepiida, are recorded from the Selandian/Thanetian boundary interval (Middle to Upper Paleocene transition, c. 59.2 Ma) along the southeastern margin (Toshka Lakes) of the Western Desert in Egypt. The two genera recognised, Aegyptosaepia n. gen. and ?Anomalosaepia Weaver and Ciampaglio, are placed in the families Belosaepiidae and ?Anomalosaepiidae, respectively. They constitute the oldest record to date of sepiids with a 'rostrum-like' prong. In addition, a third, generically and specifically indeterminate coleoid is represented by a single rostrum-like find. The taxonomic assignment of the material is based on apical parts (as preserved), i.e., guard, apical prong (or 'rostrum-like' structure), phragmocone and (remains of) protoconch, plus shell mineralogy. We here confirm the shell of early sepiids to have been bimineralic, i.e., composed of both calcite and aragonite. Aegyptosaepia lugeri n. gen., n. sp. reveals some similarities to later species of Belosaepia, in particular the possession of a distinct prong. General features of the phragmocone and protoconch of the new form are similar to both Belocurta (Middle Danian [Lower Paleocene]) and Belosaepia (Eocene). However, breviconic coiling and the presence of a longer ventral conotheca indicate closer ties with late Maastrichtian-Middle Danian Ceratisepia. In this respect, Aegyptosaepia n. gen. constitutes a link between Ceratisepia and the Eocene Belosaepia. The occurrence of the new genus near the Selandian/Thanetian boundary suggests an earlier origin of belosaepiids, during the early to Middle Paleocene. These earliest known belosaepiids may have originated in the Tethyan Realm. From northeast Africa, they subsequently spread to western India, the Arabian Plate and, probably via the Mediterranean region, to Europe and North America.


Assuntos
Cefalópodes/classificação , Animais , Evolução Biológica , Cefalópodes/genética , Egito , Europa (Continente) , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA