Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31982542

RESUMO

Cyclophosphamide (CPA) is an alkylating agent used for cancer chemotherapy, organ transplantation, and autoimmune disease treatment. Here, mRNA sequencing and high-resolution respirometry were performed to evaluate the alterations of Drosophila melanogaster gene expression fed with CPA under acute (0.1 mg/mL, for 24 h) and chronic (0.05 mg/mL, for 35 days) treatments. Differential expression analysis was performed using Cufflinks-Cuffdiff, DESeq2, and edgeR software. CPA affected genes are involved in several biological functions, including stress response and immune-related pathways, oxi-reduction and apoptotic processes, and cuticle and vitelline membrane formation. In particular, this is the first report of CPA-induced mitochondrial dysfunction caused by the downregulation of genes involved with mitochondria constituents. CPA treatment also changed the transcription pattern of transposable elements (TEs) from the gypsy and copia superfamilies. The results presented here provided evidence of CPA mitochondrial toxicity mechanisms and that CPA can modify TEs transcription in Drosophila flies.


Assuntos
Ciclofosfamida/toxicidade , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Expressão Gênica , Mitocôndrias , Animais , Apoptose , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Peptídeo Hidrolases/genética , Retroelementos/genética
2.
Gene ; 679: 65-72, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30171941

RESUMO

Transposable elements (TEs) are mobile DNA sequences on genomes. Some elements are able to transpose in somatic cells, a process known as somatic transposition (ST), which has been associated with detrimental biological effects. The mariner-Mos1 element of Drosophila promotes transposition in somatic and germline cells and is an excellent model for studies related to the biological consequence of somatic excision (SE). In this work, we used temperature stress to induce increasing transposition of mariner-Mos1 during different stages of the development of D. simulans, aiming to quantify SE during lifespan. Furthermore, strains of D. melanogaster exhibiting differential expression of mariner-Mos1 were employed for estimating some biological consequences of mariner mobilization. It is shown that SE of mariner-Mos1 was not constant during development; the larval phase had the highest rates while the pupal stage exhibited lower rates, and in the embryonic stage, no difference was detected. SE can be detrimental, as suggested by correlation in SE level and reduction in behavioral activities and embryonic viability. This study showed that mariner-Mos1 SE accumulates during the Drosophila life cycle, and can be involved in detrimental effects.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/crescimento & desenvolvimento , Estresse Fisiológico , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Temperatura , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA