Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(8): 1703-1732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594842

RESUMO

We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons. Cox's method for correcting space-clamp errors was extended to the case of an isopotential compartment with attached neurites. The method was applied to voltage-ramp experiments, in which iNaP is assumed to gate instantaneously. The raw estimates of iNaP led to predicted clamp currents that were at variance with observation, hence an algorithm was devised to improve these estimates. Optionally, the method also allows an estimate of the membrane specific capacitance, although values of the axial resistivity and seal resistance must be provided. Assuming that membrane specific capacitance and axial resistivity were constant, we conclude that seal resistance continued to fall after adding TTX to the bath. This might have been attributable to a further deterioration of the seal after baseline rather than an unlikely effect of TTX. There was an increase in the membrane specific resistance in TTX. The reason for this is unknown, but it meant that iNaP could not be determined by simple subtraction. Attempts to account for iNaP with a Hodgkin-Huxley model of the transient sodium conductance met with mixed results. One thing to emerge was the importance of voltage shifts. Also, a large variability in previously reported values of transient sodium conductance in mossy fibre boutons made comparisons with our results difficult. Various other possible sources of error are discussed. Simulations suggest a role for iNaP in modulating the axonal attenuation of EPSPs. KEY POINTS: We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons, using a KCl-based internal (pipette) solution and correcting for the liquid junction potential (2 mV). Space-clamp errors and deterioration of the patch-clamp seal during the experiment were corrected for by compartmental modelling. Attempts to account for iNaP in terms of the transient sodium conductance met with mixed results. One possibility is that the transient sodium conductance is higher in mossy fibre boutons than in the axon shaft. The analysis illustrates the need to account for various voltage shifts (Donnan potentials, liquid junction potentials and, possibly, other voltage shifts). Simulations suggest a role for iNaP in modulating the axonal attenuation of excitatory postsynaptic potentials, hence analog signalling by dentate granule cells.


Assuntos
Fibras Musgosas Hipocampais , Sódio , Ratos , Animais , Terminações Pré-Sinápticas
2.
Eur J Neurosci ; 59(5): 752-770, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37586411

RESUMO

It has been suggested that consciousness is closely related to the complexity of the brain. The perturbational complexity index (PCI) has been used in humans and rodents to distinguish conscious from unconscious states based on the global cortical responses (recorded by electroencephalography, EEG) to local cortical stimulation (CS). However, it is unclear how different cortical layers respond to CS and contribute to the resulting intra- and inter-areal cortical connectivity and PCI. A detailed investigation of the local dynamics is needed to understand the basis for PCI. We hypothesized that the complexity level of global cortical responses (PCI) correlates with layer-specific activity and connectivity. We tested this idea by measuring global cortical dynamics and layer-specific activity in the somatosensory cortex (S1) of mice, combining cortical electrical stimulation in deep motor cortex, global electrocorticography (ECoG) and local laminar recordings from layers 1-6 in S1, during wakefulness and general anaesthesia (sevoflurane). We found that the transition from wake to sevoflurane anaesthesia correlated with a drop in both the global and local PCI (PCIst ) values (complexity). This was accompanied by a local decrease in neural firing rate, spike-field coherence and long-range functional connectivity specific to deep layers (L5, L6). Our results suggest that deep cortical layers are mechanistically important for changes in PCI and thereby for changes in the state of consciousness.


Assuntos
Anestesia , Córtex Somatossensorial , Humanos , Animais , Camundongos , Sevoflurano , Estado de Consciência , Encéfalo
3.
Neuroimage ; 226: 117566, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221442

RESUMO

BACKGROUND: In the Wada test, one hemisphere is selectively anaesthetised by unilateral intracarotid injection of a fast-acting anaesthetic agent. This gives a unique opportunity to observe the functions and physiological activity of one hemisphere while anaesthetising the other, allowing direct comparisons between brain states and hemispheres that are not possible in any other setting. AIM: To test whether potential measures of consciousness would be affected by selective anaesthesia of one hemisphere, and reliably distinguish the states of the anesthetised and non-anesthetised hemispheres. METHODS: We analysed EEG data from 7 patients undergoing Wada-tests in preparation for neurosurgery and computed several measures reported to correlate with the state of consciousness: power spectral density, functional connectivity, and measures of signal diversity. These measures were compared between conditions (normal rest vs. unilateral anaesthesia) and hemispheres (injected vs. non-injected), and used with a support vector machine to classify the state and site of injection objectively from individual patient's recordings. RESULTS: Although brain function, assessed behaviourally, appeared to be substantially altered only on the injected side, we found large bilateral changes in power spectral density for all frequency bands tested, and functional connectivity changed significantly both between and within both hemispheres. Surprisingly, we found no statistically significant differences in the measures of signal diversity between hemispheres or states, for the group of 7 patients, although 4 of the individual patients showed a significant decrease in signal diversity on the injected side. Nevertheless, including signal diversity measures improved the classification results, indicating that these measures carry at least some non-redundant information about the condition and injection site. We propose that several of these results may be explained by conduction of activity, via the corpus callosum, from the injected to the contralateral hemisphere and vice versa, without substantially affecting the function of the receiving hemisphere, thus reflecting what we call "cross-state unreceptiveness".


Assuntos
Anestesia , Anestésicos Intravenosos , Artéria Carótida Interna , Estado de Consciência/fisiologia , Eletroencefalografia , Etomidato , Lateralidade Funcional/fisiologia , Adulto , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Humanos , Injeções Intra-Arteriais , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Cuidados Pré-Operatórios
4.
J Clin Monit Comput ; 35(6): 1381-1394, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33064257

RESUMO

We test whether a measure based on the directed transfer function (DTF) calculated from short segments of electroencephalography (EEG) time-series can be used to monitor the state of the patients also during sevoflurane anesthesia as it can for patients undergoing propofol anesthesia. We collected and analyzed 25-channel EEG from 7 patients (3 females, ages 41-56 years) undergoing surgical anesthesia with sevoflurane, and quantified the sensor space directed connectivity for every 1-s epoch using DTF. The resulting connectivity parameters were compared to corresponding parameters from our previous study (n = 8, patients anesthetized with propofol and remifentanil, but otherwise using a similar protocol). Statistical comparisons between and within studies were done using permutation statistics, a data driven algorithm based on the DTF-parameters was employed to classify the epochs as coming from awake or anesthetized state. According to results of the permutation tests, DTF-parameter topographies were significantly different between the awake and anesthesia state at the group level. However, the topographies were not significantly different when comparing results computed from sevoflurane and propofol data, neither in the awake nor in anesthetized state. Optimizing the algorithm for simultaneously having high sensitivity and specificity in classification yielded an accuracy of 95.1% (SE = 0.96%), with sensitivity of 98.4% (SE = 0.80%) and specificity of 94.8% (SE = 0.10%). These findings indicate that the DTF changes in a similar manner when humans undergo general anesthesia caused by two distinct anesthetic agents with different molecular mechanisms of action.


Assuntos
Propofol , Vigília , Adulto , Anestesia Geral , Eletroencefalografia , Feminino , Humanos , Pessoa de Meia-Idade , Sevoflurano
5.
J Neurosci ; 37(45): 10882-10893, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118218

RESUMO

How consciousness (experience) arises from and relates to material brain processes (the "mind-body problem") has been pondered by thinkers for centuries, and is regarded as among the deepest unsolved problems in science, with wide-ranging theoretical, clinical, and ethical implications. Until the last few decades, this was largely seen as a philosophical topic, but not widely accepted in mainstream neuroscience. Since the 1980s, however, novel methods and theoretical advances have yielded remarkable results, opening up the field for scientific and clinical progress. Since a seminal paper by Crick and Koch (1998) claimed that a science of consciousness should first search for its neural correlates (NCC), a variety of correlates have been suggested, including both content-specific NCCs, determining particular phenomenal components within an experience, and the full NCC, the neural substrates supporting entire conscious experiences. In this review, we present recent progress on theoretical, experimental, and clinical issues. Specifically, we (1) review methodological advances that are important for dissociating conscious experience from related enabling and executive functions, (2) suggest how critically reconsidering the role of the frontal cortex may further delineate NCCs, (3) advocate the need for general, objective, brain-based measures of the capacity for consciousness that are independent of sensory processing and executive functions, and (4) show how animal studies can reveal population and network phenomena of relevance for understanding mechanisms of consciousness.


Assuntos
Comportamento , Encéfalo/fisiopatologia , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/psicologia , Estado de Consciência , Animais , Comportamento Animal , Humanos , Psicofisiologia
6.
J Physiol ; 595(3): 739-757, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562026

RESUMO

KEY POINTS: Kv2 channels underlie delayed-rectifier potassium currents in various neurons, although their physiological roles often remain elusive. Almost nothing is known about Kv2 channel functions in medial entorhinal cortex (mEC) neurons, which are involved in representing space, memory formation, epilepsy and dementia. Stellate cells in layer II of the mEC project to the hippocampus and are considered to be space-representing grid cells. We used the new Kv2 blocker Guangxitoxin-1E (GTx) to study Kv2 functions in these neurons. Voltage clamp recordings from mEC stellate cells in rat brain slices showed that GTx inhibited delayed-rectifier K+ current but not transient A-type current. In current clamp, GTx had multiple effects: (i) increasing excitability and bursting at moderate spike rates but reducing firing at high rates; (ii) enhancing after-depolarizations; (iii) reducing the fast and medium after-hyperpolarizations; (iv) broadening action potentials; and (v) reducing spike clustering. GTx is a useful tool for studying Kv2 channels and their functions in neurons. ABSTRACT: The medial entorhinal cortex (mEC) is strongly involved in spatial navigation, memory, dementia and epilepsy. Although potassium channels shape neuronal activity, their roles in mEC are largely unknown. We used the new Kv2 blocker Guangxitoxin-1E (GTx; 10-100 nm) in rat brain slices to investigate Kv2 channel functions in mEC layer II stellate cells (SCs). These neurons project to the hippocampus and are considered to be grid cells representing space. Voltage clamp recordings from SCs nucleated patches showed that GTx inhibited a delayed rectifier K+ current activating beyond -30 mV but not transient A-type current. In current clamp, GTx (i) had almost no effect on the first action potential but markedly slowed repolarization of late spikes during repetitive firing; (ii) enhanced the after-depolarization (ADP); (iii) reduced fast and medium after-hyperpolarizations (AHPs); (iv) strongly enhanced burst firing and increased excitability at moderate spike rates but reduced spiking at high rates; and (v) reduced spike clustering and rebound potentials. The changes in bursting and excitability were related to the altered ADPs and AHPs. Kv2 channels strongly shape the activity of mEC SCs by affecting spike repolarization, after-potentials, excitability and spike patterns. GTx is a useful tool and may serve to further clarify Kv2 channel functions in neurons. We conclude that Kv2 channels in mEC SCs are important determinants of intrinsic properties that allow these neurons to produce spatial representation. The results of the present study may also be important for the accurate modelling of grid cells.


Assuntos
Proteínas de Artrópodes/farmacologia , Neurônios/efeitos dos fármacos , Canais de Potássio Shab/fisiologia , Venenos de Aranha/farmacologia , Animais , Córtex Entorrinal/citologia , Técnicas In Vitro , Masculino , Neurônios/fisiologia , Ratos Wistar
7.
J Neurosci ; 34(20): 6807-12, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24828634

RESUMO

The medial entorhinal cortex (MEC) is important for spatial navigation and memory. Stellate cells (SCs) of MEC layer II provide major input to the hippocampus, and are thought to be the neuronal correlate of the grid cells. Their electrophysiological properties have been used to explain grid field formation. However, little is known about the functional roles of potassium channels in SCs. M-current is a slowly activating potassium current, active at subthreshold potentials. Although some studies have suggested that Kv7/M-channels may affect subthreshold resonance in SCs, others have found no Kv7/M-current in these cells, so the expression and roles of Kv7/M-channels in SCs are still debated. Using whole-cell voltage-clamp, we have identified a typical M-current with pharmacological properties characteristic of Kv7/M-channels in rat MEC SCs. Current-clamp experiments showed that the specific Kv7/M-channel blocker XE991 increased SCs excitability, and reduced spike frequency adaptation. Our results demonstrate that Kv7/M-channels are expressed in SCs and contribute substantially to regulation of excitability in these cells.


Assuntos
Potenciais de Ação/fisiologia , Córtex Entorrinal/metabolismo , Canais de Potássio KCNQ/metabolismo , Neurônios/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antracenos/farmacologia , Córtex Entorrinal/citologia , Córtex Entorrinal/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
8.
J Physiol ; 593(7): 1551-80, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25656084

RESUMO

In rodent hippocampi, the connections, gene expression and functions differ along the dorsoventral (D-V) axis. CA1 pyramidal cells show increasing excitability along the D-V axis, although the underlying mechanism is not known. In the present study, we investigated how the M-current (IM ), caused by Kv7/M (KCNQ) potassium channels, and known to often control neuronal excitability, contributes to D-V differences in intrinsic properties of CA1 pyramidal cells. Using whole-cell patch clamp recordings and the selective Kv7/M blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) in hippocampal slices from 3- to 4-week-old rats, we found that: (i) IM had a stronger impact on subthreshold electrical properties in dorsal than ventral CA1 pyramidal cells, including input resistance, temporal summation of artificial synaptic potentials, and M-resonance; (ii) IM activated at more negative potentials (left-shifted) and had larger peak amplitude in the dorsal than ventral CA1; and (iii) the initial spike threshold (during ramp depolarizations) was elevated, and the medium after-hyperpolarization and spike frequency adaptation were increased (i.e. excitability was lower) in the dorsal rather than ventral CA1. These differences were abolished or reduced by application of XE991, indicating that they were caused by IM . Thus, it appears that IM has stronger effects in dorsal than in ventral rat CA1 pyramidal cells because of a larger maximal M-conductance and left-shifted activation curve in the dorsal cells. These mechanisms may contribute to D-V differences in the rate and phase coding of position by CA1 place cells, and may also enhance epileptiform activity in ventral CA1.


Assuntos
Canais de Potássio KCNQ/fisiologia , Células Piramidais/fisiologia , Animais , Antracenos/farmacologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Técnicas In Vitro , Canais de Potássio KCNQ/antagonistas & inibidores , Masculino , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Wistar
9.
J Physiol ; 592(4): 669-93, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24366266

RESUMO

The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP-spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Hipocampo/fisiologia , Canais de Potássio KCNQ/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Sinapses/fisiologia , Potenciais de Ação , Animais , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Potenciais da Membrana , Moduladores de Transporte de Membrana/farmacologia , Neurônios/metabolismo , Neurônios/fisiologia , Fenilenodiaminas/farmacologia , Ratos , Ratos Wistar , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Sinapses/metabolismo
10.
Eur J Neurosci ; 39(1): 12-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24148023

RESUMO

Spike timing and network synchronization are important for plasticity, development and maturation of brain circuits. Spike delays and timing can be strongly modulated by a low-threshold, slowly inactivating, voltage-gated potassium current called D-current (ID ). ID can delay the onset of spiking, cause temporal integration of multiple inputs, and regulate spike threshold and network synchrony. Recent data indicate that ID can also undergo activity-dependent, homeostatic regulation. Therefore, we have studied the postnatal development of ID -dependent mechanisms in CA1 pyramidal cells in hippocampal slices from young rats (P7-27), using somatic whole-cell recordings. At P21-27, these neurons showed long spike delays and pronounced temporal integration in response to a series of brief depolarizing current pulses or a single long pulse, whereas younger cells (P7-20) showed shorter discharge delays and weak temporal integration, although the spike threshold became increasingly negative with maturation. Application of α-dendrotoxin (α-DTX), which blocks ID , reduced the spiking latency and temporal integration most strongly in mature cells, while shifting the spike threshold most strongly in a depolarizing direction in these cells. Voltage-clamp analysis revealed an α-DTX-sensitive outward current (ID ) that increased in amplitude during development. In contrast to P21-23, ID in the youngest group (P7-9) showed smaller peri-threshold amplitude. This may explain why long discharge delays and robust temporal integration only appear later, 3 weeks postnatally. We conclude that ID properties and ID -dependent functions develop postnatally in rat CA1 pyramidal cells, and ID may modulate network activity and plasticity through its effects on synaptic integration, spike threshold, timing and synchrony.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal/fisiologia , Venenos Elapídicos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Células Piramidais/fisiologia , Fatores Etários , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Cinética , Masculino , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Tempo de Reação , Transmissão Sináptica
11.
Neurosci Conscious ; 2024(1): niae021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757120

RESUMO

To investigate mechanisms underlying loss of consciousness, it is important to extend methods established in humans to rodents as well. Perturbational complexity index (PCI) is a promising metric of "capacity for consciousness" and is based on a perturbational approach that allows inferring a system's capacity for causal integration and differentiation of information. These properties have been proposed as necessary for conscious systems. Measures based on spontaneous electroencephalography recordings, however, may be more practical for certain clinical purposes and may better reflect ongoing dynamics. Here, we compare PCI (using electrical stimulation for perturbing cortical activity) to several spontaneous electroencephalography-based measures of signal diversity and integrated information in rats undergoing propofol, sevoflurane, and ketamine anesthesia. We find that, along with PCI, the spontaneous electroencephalography-based measures, Lempel-Ziv complexity (LZ) and geometric integrated information (ΦG), were best able to distinguish between awake and propofol and sevoflurane anesthesia. However, PCI was anti-correlated with spontaneous measures of integrated information, which generally increased during propofol and sevoflurane anesthesia, contrary to expectations. Together with an observed divergence in network properties estimated from directed functional connectivity (current results) and effective connectivity (earlier results), the perturbation-based results seem to suggest that anesthesia disrupts global cortico-cortical information transfer, whereas spontaneous activity suggests the opposite. We speculate that these seemingly diverging results may be because of suppressed encoding specificity of information or driving subcortical projections from, e.g., the thalamus. We conclude that certain perturbation-based measures (PCI) and spontaneous measures (LZ and ΦG) may be complementary and mutually informative when studying altered states of consciousness.

12.
Neuron ; 112(10): 1531-1552, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447578

RESUMO

How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.


Assuntos
Encéfalo , Estado de Consciência , Estado de Consciência/fisiologia , Humanos , Encéfalo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais
13.
Front Hum Neurosci ; 16: 987051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277049

RESUMO

In the field of consciousness science, there is a tradition to categorize certain states such as slow-wave non-REM sleep and deep general anesthesia as "unconscious". While this categorization seems reasonable at first glance, careful investigations have revealed that it is not so simple. Given that (1) behavioral signs of (un-)consciousness can be unreliable, (2) subjective reports of (un-)consciousness can be unreliable, and, (3) states presumed to be unconscious are not always devoid of reported experience, there are reasons to reexamine our traditional assumptions about "states of unconsciousness". While these issues are not novel, and may be partly semantic, they have implications both for scientific progress and clinical practice. We suggest that focusing on approaches that provide a more pragmatic and nuanced characterization of different experimental conditions may promote clarity in the field going forward, and help us build stronger foundations for future studies.

14.
Neuron ; 49(2): 257-70, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16423699

RESUMO

The persistent Na+ current, INaP, is known to amplify subthreshold oscillations and synaptic potentials, but its impact on action potential generation remains enigmatic. Using computational modeling, whole-cell recording, and dynamic clamp of CA1 hippocampal pyramidal cells in brain slices, we examined how INaP changes the transduction of excitatory current into action potentials. Model simulations predicted that INaP increases afterhyperpolarizations, and, although it increases excitability by reducing rheobase, INaP also reduces the gain in discharge frequency in response to depolarizing current (f/I gain). These predictions were experimentally confirmed by using dynamic clamp, thus circumventing the longstanding problem that INaP cannot be selectively blocked. Furthermore, we found that INaP increased firing regularity in response to sustained depolarization, although it decreased spike time precision in response to single evoked EPSPs. Finally, model simulations demonstrated that I(NaP) increased the relative refractory period and decreased interspike-interval variability under conditions resembling an active network in vivo.


Assuntos
Neurônios/fisiologia , Canais de Sódio/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Ratos , Transmissão Sináptica/fisiologia , Tetrodotoxina/farmacologia
15.
J Neurosci ; 29(46): 14472-83, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19923281

RESUMO

Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Células Piramidais/fisiologia , Ritmo Teta , Animais , Região CA1 Hipocampal/citologia , Masculino , Potenciais da Membrana/fisiologia , Ratos , Ratos Wistar , Ritmo Teta/métodos
16.
Neurosci Biobehav Rev ; 119: 440-455, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002561

RESUMO

Dreams are internally generated experiences that occur independently of current sensory input. Here we argue, based on cortical anatomy and function, that dream experiences are tightly related to the workings of a specific part of cortical pyramidal neurons, the apical integration zone (AIZ). The AIZ receives and processes contextual information from diverse sources and could constitute a major switch point for transitioning from externally to internally generated experiences such as dreams. We propose that during dreams the output of certain pyramidal neurons is mainly driven by input into the AIZ. We call this mode of functioning "apical drive". Our hypothesis is based on the evidence that the cholinergic and adrenergic arousal systems, which show different dynamics between waking, slow wave sleep, and rapid eye movement sleep, have specific effects on the AIZ. We suggest that apical drive may also contribute to waking experiences, such as mental imagery. Future studies, investigating the different modes of apical function and their regulation during sleep and wakefulness are likely to be richly rewarded.


Assuntos
Sonhos , Sono REM , Nível de Alerta , Humanos , Sono , Vigília
17.
PLoS One ; 15(11): e0242056, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33226992

RESUMO

How and to what extent electrical brain activity reflects pharmacologically altered states and contents of consciousness, is not well understood. Therefore, we investigated whether measures of evoked and spontaneous electroencephalographic (EEG) signal diversity are altered by sub-anaesthetic levels of ketamine compared to normal wakefulness, and how these measures relate to subjective experience. High-density 62-channel EEG was used to record spontaneous brain activity and responses evoked by transcranial magnetic stimulation (TMS) in 10 healthy volunteers before and during administration of sub-anaesthetic doses of ketamine in an open-label within-subject design. Evoked signal diversity was assessed using the perturbational complexity index (PCI), calculated from EEG responses to TMS perturbations. Signal diversity of spontaneous EEG, with eyes open and eyes closed, was assessed by Lempel Ziv complexity (LZc), amplitude coalition entropy (ACE), and synchrony coalition entropy (SCE). Although no significant difference was found in TMS-evoked complexity (PCI) between the sub-anaesthetic ketamine condition and normal wakefulness, all measures of spontaneous EEG signal diversity (LZc, ACE, SCE) showed significantly increased values in the sub-anaesthetic ketamine condition. This increase in signal diversity correlated with subjective assessment of altered states of consciousness. Moreover, spontaneous signal diversity was significantly higher when participants had eyes open compared to eyes closed, both during normal wakefulness and during influence of sub-anaesthetic ketamine. The results suggest that PCI and spontaneous signal diversity may reflect distinct, complementary aspects of changes in brain properties related to altered states of consciousness: the brain's capacity for information integration, assessed by PCI, might be indicative of the brain's ability to sustain consciousness, while spontaneous complexity, as measured by EEG signal diversity, may be indicative of the complexity of conscious content. Thus, sub-anaesthetic ketamine may increase the complexity of the conscious content and the brain activity underlying it, while the level or general capacity for consciousness remains largely unaffected.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/efeitos dos fármacos , Alucinógenos/administração & dosagem , Ketamina/administração & dosagem , Adulto , Encéfalo/efeitos dos fármacos , Entropia , Potenciais Evocados/efeitos dos fármacos , Feminino , Alucinógenos/farmacologia , Voluntários Saudáveis , Humanos , Ketamina/farmacologia , Masculino , Estimulação Magnética Transcraniana/efeitos dos fármacos , Vigília/fisiologia , Adulto Jovem
18.
J Neurosci Methods ; 176(2): 57-62, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18778735

RESUMO

Urethane anesthesia is frequently used for acute experiments on small rodents in physiology and neuroscience. Severe respiratory distress is a common side-effect of urethane anesthesia in many strains of mice. Associated complications interfere with completion of experiments, and as a consequence more animals must be sacrificed. During experiments with stereotaxic brain surgery, we found that intubation by means of tracheotomy is an efficient way to maintain patent airways in these animals. Artificial ventilation of the animals is not required. In this paper we describe a simple, fast and reliable method for intubation of mice in experiments that involve a stereotaxic instrument. The method proved considerably easier to learn and apply than conventional intubation through the oral route. The incidence of breathing problems decreased from 77% in untreated mice to 9% in those that underwent tracheotomy. In addition, the success rate for our acute electrophysiological experiments increased from 24 to 77%. We conclude that tracheotomy reduces the number of sacrificed animals, and saves time and labor.


Assuntos
Anestesia/métodos , Encéfalo/cirurgia , Técnicas Estereotáxicas , Traqueotomia/métodos , Uretana , Análise de Variância , Animais , Eletrofisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Nat Neurosci ; 8(1): 51-60, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15608631

RESUMO

In humans, mutations in the KCNQ2 or KCNQ3 potassium-channel genes are associated with an inherited epilepsy syndrome. We have studied the contribution of KCNQ/M-channels to the control of neuronal excitability by using transgenic mice that conditionally express dominant-negative KCNQ2 subunits in brain. We show that suppression of the neuronal M current in mice is associated with spontaneous seizures, behavioral hyperactivity and morphological changes in the hippocampus. Restriction of transgene expression to defined developmental periods revealed that M-channel activity is critical to the development of normal hippocampal morphology during the first postnatal weeks. Suppression of the M current after this critical period resulted in mice with signs of increased neuronal excitability and deficits in hippocampus-dependent spatial memory. M-current-deficient hippocampal CA1 pyramidal neurons showed increased excitability, reduced spike-frequency adaptation, attenuated medium afterhyperpolarization and reduced intrinsic subthreshold theta resonance. M channels are thus critical determinants of cellular and neuronal network excitability, postnatal brain development and cognitive performance.


Assuntos
Comportamento Animal , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Fenômenos Biofísicos , Biofísica , Encéfalo/metabolismo , Encéfalo/patologia , Eletrofisiologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/psicologia , Feminino , Genes Dominantes , Hipercinese/genética , Canal de Potássio KCNQ2 , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Oócitos , Fenótipo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Células Piramidais , Natação , Xenopus laevis
20.
Front Cell Neurosci ; 13: 508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780902

RESUMO

Oriens-lacunosum moleculare (OLM) cells are hippocampal inhibitory interneurons that are implicated in the regulation of information flow in the CA1 circuit, inhibiting cortical inputs to distal pyramidal cell dendrites, whilst disinhibiting CA3 inputs to pyramidal cells. OLM cells express metabotropic cholinergic (mAChR) and glutamatergic (mGluR) receptors, so modulation of these cells via these receptors may contribute to switching between functional modes of the hippocampus. Using a transgenic mouse line to identify OLM cells, we found that both mAChR and mGluR activation caused the cells to exhibit long-lasting depolarizing plateau potentials following evoked spike trains. Both mAChR- and mGluR-induced plateau potentials were eliminated by blocking transient receptor potential (TRP) channels, and were dependent on intracellular calcium concentration and calcium entry. Pharmacological tests indicated that Group I mGluRs are responsible for the glutamatergic induction of plateaus. There was also a pronounced synergy between the cholinergic and glutamatergic modulation, plateau potentials being generated by agonists applied together at concentrations too low to elicit any change when applied individually. This synergy could enable OLM cells to function as coincidence detectors of different neuromodulatory systems, leading to their enhanced and prolonged activation and a functional change in information flow within the hippocampus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA