Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 33(25)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35276689

RESUMO

Currently, there is growing interest in wearable and biocompatible smart computing and information processing systems that are safe for the human body. Memristive devices are promising for solving such problems due to a number of their attractive properties, such as low power consumption, scalability, and the multilevel nature of resistive switching (plasticity). The multilevel plasticity allows memristors to emulate synapses in hardware neuromorphic computing systems (NCSs). The aim of this work was to study Cu/poly-p-xylylene(PPX)/Au memristive elements fabricated in the crossbar geometry. In developing the technology for manufacturing such samples, we took into account their characteristics, in particular stable and multilevel resistive switching (at least 10 different states) and low operating voltage (<2 V), suitable for NCSs. Experiments on cycle to cycle (C2C) switching of a single memristor and device to device (D2D) switching of several memristors have shown high reproducibility of resistive switching (RS) voltages. Based on the obtained memristors, a formal hardware neuromorphic network was created that can be trained to classify simple patterns.

2.
Molecules ; 26(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498932

RESUMO

Nanoparticles based on biocompatible methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG113-b-P(D,L)LAn) copolymers as potential vehicles for the anticancer agent oxaliplatin were prepared by a nanoprecipitation technique. It was demonstrated that an increase in the hydrophobic PLA block length from 62 to 173 monomer units leads to an increase of the size of nanoparticles from 32 to 56 nm. Small-angle X-ray scattering studies confirmed the "core-corona" structure of mPEG113-b-P(D,L)LAn nanoparticles and oxaliplatin loading. It was suggested that hydrophilic oxaliplatin is adsorbed on the core-corona interface of the nanoparticles during the nanoprecipitation process. The oxaliplatin loading content decreased from 3.8 to 1.5% wt./wt. (with initial loading of 5% wt./wt.) with increasing PLA block length. Thus, the highest loading content of the anticancer drug oxaliplatin with its encapsulation efficiency of 76% in mPEG113-b-P(D,L)LAn nanoparticles can be achieved for block copolymer with short hydrophobic block.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Nanopartículas/química , Oxaliplatina/química , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
3.
Langmuir ; 34(50): 15470-15482, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30441905

RESUMO

The effect of the hydrophobic block length in diblock (PLLA x- b-PEO113, x = 64, 166, 418) and triblock (PLLA y- b-PEO91- b-PLLA y, y = 30, 52, 120) copolymers of l-lactic acid and ethylene oxide on the structure of micelles prepared by dialysis was studied by wide- and small-angle X-ray scattering in dilute aqueous solution, dynamic light scattering, transmission electron microscopy, atomic force microscopy, and force spectroscopy. It was found that the size of the crystalline PLLA core is weakly dependent on the PLLA block length. In addition to individual micelles, a number of their micellar clusters were detected with characteristic distance between adjacent micelle cores decreasing with an increase in PLLA block length. This effect was explained by the change in the conformation of PEO chains forming the micellar corona because of their overcrowding. Force spectroscopy experiments also reveal a more stretched conformation of the PEO chains for the block copolymers with a shorter PLLA block. A model describing the structure of the individual micelles and their clusters was proposed.

4.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446432

RESUMO

Silica hollow spheres with a diameter of 100-300 nm and a shell thickness of 8±2 nm were synthesized using a self-templating amphiphilic polymeric precursor, i.e., poly(ethylene glycol)-substituted hyperbranched polyethoxysiloxane. Their elastic properties were addressed with a high-frequency AFM indentation method based on the PeakForce QNM (quantitative nanomechanical mapping) mode enabling simultaneous visualization of the surface morphology and high-resolution mapping of the mechanical properties. The factors affecting the accuracy of the mechanical measurements such as a local slope of the particle surface, deformation of the silica hollow particles by a solid substrate, shell thickness variation, and applied force range were analysed. The Young's modulus of the shell material was evaluated as E=26±7 GPa independent of the applied force in the elastic regime of deformations. Beyond the elastic regime, the buckling instability was observed revealing a non-linear force-deformation response with a hysteresis between the loading and unloading force-distance curves and irreversible deformation of the shell at high applied forces. Thus, it was demonstrated that PeakForce QNM mode can be used for quantitative measurements of the elastic properties of submicon-sized silica hollow particles with nano-size shell thickness, as well as for estimation of the buckling behaviour beyond the elastic regime of shell deformations.

5.
Polymers (Basel) ; 15(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514391

RESUMO

The effect of primary amino acid sequence in recombinant spidroins on their spatial organization is crucial for the fabrication of artificial fibers and fibrous materials. This study focuses on the rheological properties of aqueous and alcoholic solutions of recombinant analogs of natural spidroins (rS1/9 and rS2/12), as well as the structure of their films and nanofibrous materials. Non-Newtonian flow behavior of aqueous solutions of these proteins was observed at certain concentrations in contrast to their solutions in hexafluoroisopropanol. The secondary structure of recombinant spidroins was addressed by IR spectroscopy, whereas their self-organization in various solvents was studied by AFM and cryo-TEM. The influence of the solvent on the structure and properties of the films and nanofibrous materials produced by electrospinning has been established.

6.
Carbohydr Polym ; 157: 1496-1502, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987861

RESUMO

Squid ß-chitin has been exfoliated in aqueous acrylic acid (AA), after which a composite film of chitin microfibrils in polyacrylic acid (PAA) has been prepared by in situ polymerization of the AA. The segregated chitin fibrils in the composite are 4-6nm in diameter, with an aspect ratio >250. After drying cast films of the composites containing 1, 2 and 3% (w/w) chitin at 140°C for four hours, there was a dramatic resistance to swelling in water, in that the dried films showed only small changes in shape and properties after four hours immersed in water.The most profound impact of the reinforcement on the mechanical properties is observed at high relative humidity (RH), when the PAA is in the rubbery state. At 97.5% RH and room temperature, the elastic moduli of the composites with 1, 2 and 3% (w/w) chitin were 150, 230 and 2100MPa respectively, compared to 65MPa for pure PAA. The main contribution to the filler-reinforcing effect is the high aspect ratio of fibrils and non-covalent interactions, but the stability in water suggests the presence of chemical bonding between the PAA and chitin.

7.
Carbohydr Polym ; 137: 678-684, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26686179

RESUMO

Models for the structures of the ß-chitin-protein complex of native and deproteinized squid pen (Berryteuthis magister) based on SAXS and WAXS data are proposed. Chitin fibrils of 25 Å in diameter and persistence length of 1200 Å are immersed in protein matrix. Average distance between fibrils is 42 Å. Deproteinization of the squid pen led to disappearance of the lateral fibril order stabilized by the protein matrix of the native sample. Swelling in water and acrylic acid resulted in an increase in the chitin 010 D-spacing to 14 and 18 Å, respectively. A preparation routine for individual chitin nanofibers of few microns in length and with diameter of 40-60 Å has been developed. During exfoliation of the chitin in acrylic acid the degree of acetylation does not change. Chitin-based nanocomposites can be prepared by polymerization of acrylic acid in swelled deproteinized samples which takes place mainly in the interfibrillar space of ß-chitin mainly.


Assuntos
Quitina/química , Decapodiformes/química , Animais , Microscopia de Força Atômica , Modelos Biológicos , Nanofibras/química , Polimerização , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA