Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10611-10622, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836563

RESUMO

Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.


Assuntos
Florestas , Nitrogênio , Fósforo , Solo , Solo/química , Nitrificação , Taiga , China , Incêndios
2.
Glob Chang Biol ; 26(9): 5267-5276, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32614503

RESUMO

We assessed the response of soil microbial nitrogen (N) cycling and associated functional genes to elevated temperature at the global scale. A meta-analysis of 1,270 observations from 134 publications indicated that elevated temperature decreased soil microbial biomass N and increased N mineralization rates, both in the presence and absence of plants. These findings infer that elevated temperature drives microbially mediated N cycling processes from dominance by anabolic to catabolic reaction processes. Elevated temperature increased soil nitrification and denitrification rates, leading to an increase in N2 O emissions of up to 227%, whether plants were present or not. Rates of N mineralization, denitrification and N2 O emission demonstrated significant positive relationships with rates of CO2 emissions under elevated temperatures, suggesting that microbial N cycling processes were associated with enhanced microbial carbon (C) metabolism due to soil warming. The response in the abundance of relevant genes to elevated temperature was not always consistent with changes in N cycling processes. While elevated temperature increased the abundances of the nirS gene with plants and nosZ genes without plants, there was no effect on the abundances of the ammonia-oxidizing archaea amoA gene, ammonia-oxidizing bacteria amoA and nirK genes. This study provides the first global-scale assessment demonstrating that elevated temperature shifts N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification in terrestrial ecosystems. These findings infer that elevated temperatures have a profound impact on global N cycling processes with implications of a positive feedback to global climate and emphasize the close linkage between soil microbial C and N cycling.


Assuntos
Nitrificação , Solo , Archaea/genética , Desnitrificação , Ecossistema , Nitrogênio , Microbiologia do Solo , Temperatura
3.
Glob Chang Biol ; 24(8): 3452-3461, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29645398

RESUMO

Long-term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.


Assuntos
Agricultura , Ecossistema , Fertilizantes/análise , Microbiota , Microbiologia do Solo , Actinobacteria , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Proteobactérias
4.
Sci Total Environ ; 805: 150372, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818758

RESUMO

Wildfire has profound and pervasive consequences for forest ecosystems via directly altering soil physicochemical properties and modulating microbial community. In this study, we examined the changes in soil properties and microbial community composition and structure at different periods after highly severe wildfire events (44 plots, 113 samples) in the Chinese Great Khingan Mountains. We also separated charcoal from burnt soils to establish the relationship between microbial community structures in soils and charcoal. We found that wildfire only significantly altered bacterial and fungal ß-diversity, but had no effect on microbial α-diversity across a 29-year chronosequence. The network analysis revealed that the complexity and connectivity of bacterial and fungal communities were significantly increased from 17 years after fire, compared with either unburnt soils or soils with recent fires (0-4 years after fire). Differential abundance analysis suggested that bacterial and fungal OTUs were enriched or depleted only during 0-4 years after fire compared with the unburnt soils. In addition, soil pH, dissolved organic C and dissolved organic N were key determinants of soil bacterial and fungal communities during 17-29 years after fire. The fire-derived charcoal provided a new niche for microbial colonization, and microbes colonized in the charcoal had a significantly different community structure from those of burnt soils. Our data suggest that soil bacterial and fungal communities changed significantly during the recovery from fire events in terms of the abundance and co-occurrence networks in the boreal forest ecosystems.


Assuntos
Incêndios , Microbiota , Micobioma , China , Florestas , Solo , Microbiologia do Solo , Taiga
5.
Sci Total Environ ; 650(Pt 1): 626-632, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30208348

RESUMO

The interface between biochar and soil differs from both the bulk soil and the biochar itself, and has been termed the "charosphere". However, a complete definition of the charosphere, including aspects of size, properties, functional reach and effects on soil processes, is still required. In this study, the distributions of functional genes related to the soil N cycle within the charosphere were investigated over a multi-sectional gradient. We found that concentrations of dissolved organic carbon (DOC), available phosphorus and exchangeable cations (Ca2+, Mg2+, K+) increased with proximity to the biochar surface (termed the 'near charosphere'). Similarly, the abundance of bacterial amoA was greater in the near charosphere, while archaeal amoA abundance was relatively homogenous. This taxonomic asymmetry resulted in a shift in the predominant ammonia-oxidizers from ammonia-oxidizing bacteria (AOB) to ammonia-oxidizing archaea (AOA) in the far charosphere. This was associated with other factors such as decreasing pH and carbon availability with increasing distance from the biochar. Moreover, the ratio of nosZ/(nirS + nirK) genes also showed functionally asymmetry in the charosphere: increasing with increasing distance from the biochar. This is the first study to map spatial distributions of a set functional genes related to soil N cycling in the soil around biochar. This exploration into the underlying heterogeneity of biochar-affected mechanisms of N transformation provides new insight into the functional geometry of the charosphere.


Assuntos
Archaea/genética , Bactérias Anaeróbias/genética , Carvão Vegetal/química , Ciclo do Nitrogênio/genética , Microbiologia do Solo , Solo/química , Amônia/análise , Amônia/metabolismo , Archaea/metabolismo , Bactérias Anaeróbias/metabolismo , Dosagem de Genes , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Nitrogênio/metabolismo , Análise Espacial
6.
ISME J ; 12(10): 2492-2505, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30046166

RESUMO

Soil ecological functions are largely determined by the activities of soil microorganisms, which, in turn, are regulated by relevant interactions between genes and their corresponding pathways. Therefore, the genetic network can theoretically elucidate the functional organization that supports complex microbial community functions, although this has not been previously attempted. We generated a genetic correlation network based on 5421 genes derived from metagenomes of forest soils, identifying 7191 positive and 123 negative correlation relationships. This network consisted of 27 clusters enriched with sets of genes within specific functions, represented with corresponding cluster hubs. The clusters revealed a hierarchical architecture, reflecting the functional organization in the soil metagenomes. Positive correlations mapped functional associations, whereas negative correlations often mapped regulatory processes. The potential functions of uncharacterized genes were predicted based on the functions of located clusters. The global genetic correlation network highlights the functional organization in soil metagenomes and provides a resource for predicting gene functions. We anticipate that the genetic correlation network may be exploited to comprehensively decipher soil microbial community functions.


Assuntos
Florestas , Microbiota/genética , Microbiologia do Solo , Redes Reguladoras de Genes , Metagenoma , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA