Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(46): 18944-9, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23100538

RESUMO

Neurons secrete neuropeptides from dense core vesicles (DCVs) to modulate neuronal activity. Little is known about how neurons manage to differentially regulate the release of synaptic vesicles (SVs) and DCVs. To analyze this, we screened all Caenorhabditis elegans Rab GTPases and Tre2/Bub2/Cdc16 (TBC) domain containing GTPase-activating proteins (GAPs) for defects in DCV release from C. elegans motoneurons. rab-5 and rab-10 mutants show severe defects in DCV secretion, whereas SV exocytosis is unaffected. We identified TBC-2 and TBC-4 as putative GAPs for RAB-5 and RAB-10, respectively. Multiple Rabs and RabGAPs are typically organized in cascades that confer directionality to membrane-trafficking processes. We show here that the formation of release-competent DCVs requires a reciprocal exclusion cascade coupling RAB-5 and RAB-10, in which each of the two Rabs recruits the other's GAP molecule. This contributes to a separation of RAB-5 and RAB-10 domains at the Golgi-endosomal interface, which is lost when either of the two GAPs is inactivated. Taken together, our data suggest that RAB-5 and RAB-10 cooperate to locally exclude each other at an essential stage during DCV sorting.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios Motores/metabolismo , Neuropeptídeos/metabolismo , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Biológico/fisiologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Endossomos/genética , Endossomos/metabolismo , Exocitose/fisiologia , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Mutação , Vesículas Secretórias/genética , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética
2.
PLoS One ; 8(3): e59493, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555681

RESUMO

Many Caenorhabditis elegans mutants with dysfunctional mitochondrial electron transport chain are surprisingly long lived. Both short-lived (gas-1(fc21)) and long-lived (nuo-6(qm200)) mutants of mitochondrial complex I have been identified. However, it is not clear what are the pathways determining the difference in longevity. We show that even in a short-lived gas-1(fc21) mutant, many longevity assurance pathways, shown to be important for lifespan prolongation in long-lived mutants, are active. Beside similar dependence on alternative metabolic pathways, short-lived gas-1(fc21) mutants and long-lived nuo-6(qm200) mutants also activate hypoxia-inducible factor -1α (HIF-1α) stress pathway and mitochondrial unfolded protein response (UPR(mt)). The major difference that we detected between mutants of different longevity, is in the massive loss of complex I accompanied by upregulation of complex II levels, only in short-lived, gas-1(fc21) mutant. We show that high levels of complex II negatively regulate longevity in gas-1(fc21) mutant by decreasing the stability of complex I. Furthermore, our results demonstrate that increase in complex I stability, improves mitochondrial function and decreases mitochondrial stress, putting it inside a "window" of mitochondrial dysfunction that allows lifespan prolongation.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Longevidade/genética , Mutação , NADH Desidrogenase/química , NADH Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Regulação para Cima , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Estabilidade Enzimática , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
J Cell Biol ; 186(6): 897-914, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19797081

RESUMO

Small guanosine triphosphatases of the Rab family regulate intracellular vesicular trafficking. Rab2 is highly expressed in the nervous system, yet its function in neurons is unknown. In Caenorhabditis elegans, unc-108/rab-2 mutants have been isolated based on their locomotory defects. We show that the locomotion defects of rab-2 mutants are not caused by defects in synaptic vesicle release but by defects in dense core vesicle (DCV) signaling. DCVs in rab-2 mutants are often enlarged and heterogeneous in size; however, their number and distribution are not affected. This implicates Rab2 in the biogenesis of DCVs at the Golgi complex. We demonstrate that Rab2 is required to prevent DCV cargo from inappropriately entering late endosomal compartments during DCV maturation. Finally, we show that RIC-19, the C. elegans orthologue of the human diabetes autoantigen ICA69, is also involved in DCV maturation and is recruited to Golgi membranes by activated RAB-2. Thus, we propose that RAB-2 and its effector RIC-19 are required for neuronal DCV maturation.


Assuntos
Autoantígenos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Neurônios/enzimologia , Vesículas Secretórias/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rab2 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Autoantígenos/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Endossomos/enzimologia , Estabilidade Enzimática , Genótipo , Complexo de Golgi/enzimologia , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Cinética , Locomoção , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Junção Neuromuscular/enzimologia , Neurônios/ultraestrutura , Neuropeptídeos/metabolismo , Fenótipo , Conformação Proteica , Transporte Proteico , Vesículas Secretórias/ultraestrutura , Sinapses/enzimologia , Vesículas Sinápticas/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteína rab2 de Ligação ao GTP/química , Proteína rab2 de Ligação ao GTP/genética
4.
Mol Biol Cell ; 19(3): 833-42, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18094048

RESUMO

The lipid polyunsaturated fatty acids are highly enriched in synaptic membranes, including synaptic vesicles, but their precise function there is unknown. Caenorhabditis elegans fat-3 mutants lack long-chain polyunsaturated fatty acids (LC-PUFAs); they release abnormally low levels of serotonin and acetylcholine and are depleted of synaptic vesicles, but the mechanistic basis of these defects is unclear. Here we demonstrate that synaptic vesicle endocytosis is impaired in the mutants: the synaptic vesicle protein synaptobrevin is not efficiently retrieved after synaptic vesicles fuse with the presynaptic membrane, and the presynaptic terminals contain abnormally large endosomal-like compartments and synaptic vesicles. Moreover, the mutants have abnormally low levels of the phosphoinositide phosphatase synaptojanin at release sites and accumulate the main synaptojanin substrate phosphatidylinositol 4,5-bisphosphate at these sites. Both synaptobrevin and synaptojanin mislocalization can be rescued by providing exogenous arachidonic acid, an LC-PUFA, suggesting that the endocytosis defect is caused by LC-PUFA depletion. By showing that the genes fat-3 and synaptojanin act in the same endocytic pathway at synapses, our findings suggest that LC-PUFAs are required for efficient synaptic vesicle recycling, probably by modulating synaptojanin localization at synapses.


Assuntos
Caenorhabditis elegans/enzimologia , Endocitose , Ácidos Graxos Insaturados/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Vesículas Sinápticas/enzimologia , Aciltransferases/metabolismo , Animais , Ácido Araquidônico/farmacologia , Caderinas/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Endocitose/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Locomoção/efeitos dos fármacos , Mutação/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas R-SNARE/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA