Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Biol ; 21(7): e3002189, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459330

RESUMO

Plant-associated bacteria play important regulatory roles in modulating plant hormone auxin levels, affecting the growth and yields of crops. A conserved auxin degradation (iad) operon was recently identified in the Variovorax genomes, which is responsible for root growth inhibition (RGI) reversion, promoting rhizosphere colonization and root growth. However, the molecular mechanism underlying auxin degradation by Variovorax remains unclear. Here, we systematically screened Variovorax iad operon products and identified 2 proteins, IadK2 and IadD, that directly associate with auxin indole-3-acetic acid (IAA). Further biochemical and structural studies revealed that IadK2 is a highly IAA-specific ATP-binding cassette (ABC) transporter solute-binding protein (SBP), likely involved in IAA uptake. IadD interacts with IadE to form a functional Rieske non-heme dioxygenase, which works in concert with a FMN-type reductase encoded by gene iadC to transform IAA into the biologically inactive 2-oxindole-3-acetic acid (oxIAA), representing a new bacterial pathway for IAA inactivation/degradation. Importantly, incorporation of a minimum set of iadC/D/E genes could enable IAA transformation by Escherichia coli, suggesting a promising strategy for repurposing the iad operon for IAA regulation. Together, our study identifies the key components and underlying mechanisms involved in IAA transformation by Variovorax and brings new insights into the bacterial turnover of plant hormones, which would provide the basis for potential applications in rhizosphere optimization and ecological agriculture.


Assuntos
Ácidos Indolacéticos , Rizosfera , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Bactérias/metabolismo , Óperon/genética
2.
BMC Cancer ; 24(1): 816, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977966

RESUMO

Anaplastic thyroid carcinoma (ATC) is a rare but highly aggressive thyroid cancer with poor prognosis. Killing cancer cells by inducing DNA damage or blockage of DNA repair is a promising strategy for chemotherapy. It is reported that aldehyde-reactive alkoxyamines can capture the AP sites, one of the most common DNA lesions, and inhibit apurinic/apyrimidinic endonuclease 1(APE1)-mediated base excision repair (BER), leading to cell death. Whether this strategy can be employed for ATC treatment is rarely investigated. The aim of this study is to exploit GSH-responsive AP site capture reagent (AP probe-net), which responses to the elevated glutathione (GSH) levels in the tumor micro-environment (TME), releasing reactive alkoxyamine to trap AP sites and block the APE1-mediated BER for targeted anti-tumor activity against ATC. In vitro experiments, including MTT andγ-H2AX assays, demonstrate their selective cytotoxicity towards ATC cells over normal thyroid cells. Flow cytometry analysis suggests that AP probe-net arrests the cell cycle in the G2/M phase and induces apoptosis. Western blotting (WB) results show that the expression of apoptotic protein increased with the increased concentration of AP probe-net. Further in vivo experiments reveal that the AP probe-net has a good therapeutic effect on subcutaneous tumors of the ATC cells. In conclusion, taking advantage of the elevated GSH in TME, our study affords a new strategy for targeted chemotherapy of ATC with high selectivity and reduced adverse effects.


Assuntos
Apoptose , Glutationa , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/metabolismo , Humanos , Glutationa/metabolismo , Animais , Camundongos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Reparo do DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Dano ao DNA/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
3.
Chembiochem ; 24(17): e202300422, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462478

RESUMO

Proteolysis-targeting chimeras (PROTACs) provide a powerful technique to degrade targeted proteins utilizing the cellular ubiquitin-proteasome system. The major concern is the host toxicity resulting from their poor selectivity. Inducible PROTACs responding to exogenous stimulus, such as light, improve their specificity, but it is difficult for photo-activation in deep tissues. Herein, we develop H2 O2 -inducible PROTAC precursors 2/5, which can be activated by endogenous H2 O2 in cancer cells to release the active PROTACs 1/4 to effectively degrade targeted proteins. This results in the intended cytotoxicity towards cancer cells while targeted protein in normal cells remains almost unaffected. The higher Bromodomain-containing protein 4 (BRD4) degradation activity and cytotoxicity of 2 towards cancer cells is mainly due to the higher endogenous concentration of H2 O2 in cancer cells (A549 and H1299), characterized by H2 O2 -responsive fluorescence probe 3. Western blot assays and cytotoxicity experiments demonstrate that 2 degrades BRD4 more effectively and is more cytotoxic in H2 O2 -rich cancer cells than in H2 O2 -deficient normal cells. This method is also extended to estrogen receptor (ER)-PROTAC precursor 5, showing H2 O2 -dependent ER degradation ability. Thus, we establish a novel strategy to induce targeted protein degradation in a H2 O2 -dependent way, which has the potential to improve the selectivity of PROTACs.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Proteólise , Peróxido de Hidrogênio/farmacologia , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Estrogênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias/tratamento farmacológico
4.
Analyst ; 148(3): 532-538, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36349786

RESUMO

Biothiols play essential roles in balancing the redox state and modulating cellular functions. Fluorescent probes for monitoring/labelling biothiols often suffer from slow reaction rates, strong background fluorescence and cytotoxic byproduct release. Thus, developing facile and versatile probes to overcome the challenges is still in high demand. Here, we report four coumarin-maleimides as fast responding and fluorogenic probes to detect GSH or label peptides/proteins. The probes quantitatively and selectively react with GSH via Michael addition within 1-2 min, achieving an 11-196-fold increase in fluorescence quantum yield via blockage of the photoinduced electron transfer (PET) process. Optimized probe 4 is applied for the detection of GSH in vitro (A549 cells) and in vivo (zebrafish embryos). Taking advantage of the fast Michael addition between the maleimide moiety and the sulfhydryl group, we expand the application of our method for fluorescent labelling of peptides/proteins and for tracking their cellular uptake process. The labelling strategy works for both Cys-bearing and Cys-free proteins after the introduction of a sulfhydryl group using Traut's reagent. Fluorescence assay reveals that the TAT-peptide can efficiently enter cells, but H3 protein, part of nucleosomes, prefers to bind on the cell membrane by electrostatic interactions, shedding light on the cellular uptake activity of nucleosomes and affording a potential membrane staining strategy. Overall, our study illustrates the broad potential of coumarin-maleimide based dual-functional probes for GSH detection and versatile protein labelling in biochemical research.


Assuntos
Nucleossomos , Peixe-Zebra , Animais , Compostos de Sulfidrila , Peptídeos , Glutationa , Corantes Fluorescentes , Cumarínicos , Cisteína , Homocisteína
5.
Bioorg Med Chem ; 96: 117526, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38008041

RESUMO

ERα (estrogen receptor-α)-targeting PROTACs (PROteolysis TArgeting Chimeras) have emerged as a novel and promising modality for breast cancer therapeutics. However, ERα PROTACs-induced degradation in normal tissues raises concerns about potential off-tissue toxicity. Tumor microenvironment-responsive strategy provides potential for specific control of the PROTAC's on-target degradation activity. The glutathione (GSH) level has been reported to be significantly increased in tumor cells. Here, we designed a GSH-responsive ERα PROTAC, which is generated by conjugating an o-nitrobenzenesulfonyl group to the hydroxyl group of VHL-based ERα PROTAC through a nucleophilic substitution reaction. The o-nitrobenzenesulfonyl group as a protecting group blocks the bioactivity of ERα PROTAC (ER-P1), and that can be specifically recognized and removed by highly abundant GSH in cancer cells. Consequently, the GSH-responsive ERα PROTAC (GSH-ER-P1) exhibits significantly enhanced degradation of ERα in cancer cells compared to that in normal cells, leading to a remarkable inhibition of breast cancer cell proliferation and less toxic effects on normal cells. This study provides a potentially valuable strategy for breast cancer treatment using tumor microenvironment-responsive PROTACs.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Humanos , Feminino , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Mama/patologia , Glutationa/metabolismo , Proteólise , Microambiente Tumoral
6.
Bioorg Chem ; 130: 106270, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399864

RESUMO

Arylboronic acid/esters and phenyl selenides-based quinone methide (QM) precursors were reported to induce DNA interstrand crosslink (ICL) formation upon reaction with the inherently high concentrations of H2O2 in cancer cells. However, some normal cells (such as macrophages) also contain high-levels of H2O2, which may interfere with precursors' selectivity. In order to enhance the spatiotemporal specificity by the photolysis, we developed photo- and H2O2- dual-responsive DNA ICL precursors 1-3, bearing a photo-responsive coumarin moiety and a H2O2 inducible phenyl selenide group. Precursors 1-3 are efficiently activated by photoirradiation and H2O2 to generate reactive QMs crosslinking DNA. Moreover, the reactivity of precursors can be modulated by the introduction of aromatic substituents (OMe, F), and the electron donating group (OMe) displays a more pronounced promoting effect on DNA ICL formation. A subsequent piperidine heat stability study confirmed that the formed QMs primarily alkylate dAs, dGs and dCs in DNA. Furthermore, 1-3 inhibit lung cancer cell (H1299) growth by inducing DNA damage and producing toxic reactive oxygen species (ROS) upon photolysis of released coumarin. This study illustrates the potent cytotoxicity achieved by novel photo/H2O2 dual-responsive QM precursors 1-3, affording a novel strategy for the development of inducible DNA interstrand cross-linkers.


Assuntos
Reagentes de Ligações Cruzadas , Peróxido de Hidrogênio , Indolquinonas , Cumarínicos/química , Dano ao DNA/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Indolquinonas/farmacologia , Fotólise , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Linhagem Celular Tumoral
7.
Bioorg Chem ; 140: 106793, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683536

RESUMO

BRD4,as a transcriptional and epigenetic regulator to mediate cellular functions, plays an important role in cancer development.Targeting BRD4 with conventional inhibitors in cancer therapy requires high doses, which often leads to off-target and adverse effects. BRD4-targeted proteolysis-targeting chimeras (PROTACs) can catalytically degrade BRD4 utilizing the endogenous proteasome system, and exhibit promising anti-tumor activity. However, most of the developed PROTACs are non-cancer specific and relatively toxic towards normal cells, limiting their practical applications in cancer treatment. By taking advantage of higher glutathione (GSH) levels in cancer cells than that in normal cells, we developed several GSH-responsive PROTAC precursors 1a-c via the attachment of a GSH-trigger unit on the hydroxyl group of the VHL (von Hippel-Lindau) ligand for the recruitment of E3 ligase. Among the precursors, 1a can be efficiently activated by the innately higher concentrations of GSH in lung cancer cells (A549 and H1299) to release active PROTAC 1, degrading intracellular BRD4 and resulting in cytotoxicity, which is confirmed by mechanistic investigation. On the other hand, 1a cannot be efficiently triggered in normal lung cells (WI38 and HULEC-5a) containing lower levels of GSH, therefore reducing the adverse effects on normal cells. This work provides an alternative proof of concept approach for developing stimuli-responsive PROTAC precursors, and affords a novel insight to improve the selectivity and minimize the adverse effects of current PROTACs, hence enhancing their clinical potential.


Assuntos
Neoplasias Pulmonares , Proteínas Nucleares , Quimera de Direcionamento de Proteólise , Humanos , Proteínas de Ciclo Celular , Proliferação de Células , Glutationa , Neoplasias Pulmonares/tratamento farmacológico , Fatores de Transcrição
8.
Proc Natl Acad Sci U S A ; 117(22): 12080-12086, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430319

RESUMO

Small ribozymes such as Oryza sativa twister spontaneously cleave their own RNA when the ribozyme folds into its active conformation. The coupling between twister folding and self-cleavage has been difficult to study, however, because the active ribozyme rapidly converts to product. Here, we describe the synthesis of a photocaged nucleotide that releases guanosine within microseconds upon photosolvolysis with blue light. Application of this tool to O. sativa twister achieved the spatial (75 µm) and temporal (≤30 ms) control required to resolve folding and self-cleavage events when combined with single-molecule fluorescence detection of the ribozyme folding pathway. Real-time observation of single ribozymes after photo-deprotection showed that the precleaved folded state is unstable and quickly unfolds if the RNA does not react. Kinetic analysis showed that Mg2+ and Mn2+ ions increase ribozyme efficiency by making transitions to the high energy active conformation more probable, rather than by stabilizing the folded ground state or the cleaved product. This tool for light-controlled single RNA folding should offer precise and rapid control of other nucleic acid systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Dobramento de RNA/fisiologia , RNA Catalítico/metabolismo , Nanotecnologia/métodos , Oryza/metabolismo
9.
Chembiochem ; 23(7): e202200086, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35224848

RESUMO

DNA interstrand crosslinks (ICLs) are highly toxic DNA lesions, and induce cell death by blocking DNA strand separation. Most ICL agents aiming to kill cancer cells, also generate adverse side effects to normal cells. H2 O2 -inducible DNA ICL agents are highly selective for targeting cancer cells, as the concentration of H2 O2 is higher in cancer cells than normal cells. Previous studies have focused on arylboronate-based precursors, reacting with H2 O2 to generate reactive quinone methides (QMs) crosslinking DNA. Here we explore phenyl selenide-based precursors 1-3 as H2 O2 -inducible DNA ICL agents. The precursors 1-3 can be activated by H2 O2 to generate the good benzylic leaving group and promote production of reactive QMs to crosslink DNA. Moreover, the DNA cross-linking ability is enhanced by the introduction of substituents in the para-position of the phenolic hydroxyl group. From the substituents explored (H, OMe, F), the introduction of electron donating group (OMe) shows a pronounced elevating effect. Further mechanistic studies at the molecular and DNA levels confirm alkylation sites located mainly at dAs, dCs and dGs in DNA. Additionally, cellular experiments reveal that agents 1-3 exhibit higher cytotoxicity toward H1299 human lung cancer cells compared to clinically used drugs, by inducing cellular DNA damage, apoptosis and G0/G1 cell cycle arrest. This study provides a strategy to develop H2 O2 -inducible DNA interstrand cross-linkers.


Assuntos
DNA , Peróxido de Hidrogênio , Alquilação , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA , Reparo do DNA , Humanos
10.
Chemistry ; 27(16): 5215-5224, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33440025

RESUMO

Two series of 1,1'-biphenyl analogues with various leaving groups (L=OAc, OCH3 , OCHCH=CH2 , OCH2 Ph, SPh, SePh, and Ph3 P+ ) were synthesized. Their reactivity towards DNA and the reaction mechanism were investigated by determining DNA interstrand cross-link (ICL) efficiency, radical and carbocation formation, and the cross-linking reaction sites. All compounds induced DNA ICL formation upon 350 nm irradiation via a carbocation that was generated from oxidation of the corresponding free radicals. The ICL efficiency and the reaction rate strongly depended on the combined effect of the leaving group and the substituent. Among all compounds tested, the high ICL efficiency (30-43 %) and fast reaction rate were observed with compounds carrying a nitrophenyl group and acetate (2 a), ether (2 b and 2 c), or triphenylphosphonium salt (2 g) as leaving groups. Most compounds with a 4-methoxybenzene group showed similar DNA ICL efficiency (≈30 %) with a slow DNA cross-linking reaction rate. Both cation trapping and free radical trapping adducts were detected in the photo activation process of these compounds, which provided direct evidence for the proposed mechanism. Heat stability study in combination with sequence study suggested that these photo-generated benzyl cations alkylate DNA at dG, dA, and dC sites.


Assuntos
Compostos de Bifenilo , DNA , Cátions , Reagentes de Ligações Cruzadas
11.
J Am Chem Soc ; 141(26): 10154-10158, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244168

RESUMO

Electron deficient "holes" migrate over long distances through the π-system in free DNA. Hole transfer efficiency (HTE) is strongly dependent on sequence and π-stacking. However, there is no consensus regarding the effects of nucleosome core particle (NCP) environment on hole migration. We quantitatively determined HTE in free DNA and NCPs by independently generating holes at specific positions in DNA. The relative HTE varied widely with respect to position within the NCP and proximity to tyrosine, which suppresses hole transfer. These data indicate that hole transfer in chromatin will be affected by the DNA sequence and its position with respect to histone proteins within NCPs.


Assuntos
DNA/química , Nucleossomos/química , Elétrons , Modelos Moleculares , Tamanho da Partícula
12.
Chem Res Toxicol ; 32(10): 2118-2124, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31565933

RESUMO

N3-Methyl-2'-deoxyadenosine (MdA) is the major dA methylation product in duplex DNA. MdA blocks DNA replication and undergoes depurination at significantly higher rates than the native nucleotide from which it is derived. Recent reports on the effects of the nucleosome core particle (NCP) environment on the reactivity of N7-methyl-2'-deoxyguanosine (MdG) inspired this investigation concerning the reactivity of MdA in NCPs. NCPs containing MdA at selected positions were produced using a strategy in which the minor groove binding Me-Lex molecule serves as a sequence specific methylating agent. Hydrolysis of the glycosidic bond in MdA to form abasic sites (AP) is suppressed in a NCP. Experiments using histone variants indicate that the proximal, highly basic N-terminal tails are partially responsible for the decreased depurination rate constant. MdA also forms cross-links with histone proteins. The levels of MdA-histone DNA-protein cross-links (DPCMdA) decrease significantly over time and are replaced by those involving AP. The time dependent decrease in DPCMdA is attributed to the reversibility of their formation and the relatively rapid rate of AP formation from MdA. Overall, MdA reactivity in NCPs qualitatively resembles that of MdG.


Assuntos
Desoxiadenosinas/química , Nucleossomos/química , DNA/química , Proteínas de Ligação a DNA/química , Conformação de Ácido Nucleico
13.
J Am Chem Soc ; 140(36): 11308-11316, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30169029

RESUMO

Purine radical cations (dA•+ and dG•+) are the primary hole carriers of DNA hole migration due to their favorable oxidation potential. Much less is known about the reactivity of higher energy pyrimidine radical cations. The thymidine radical cation (T•+) was produced at a defined position in DNA from a photochemical precursor for the first time. T•+ initiates hole transfer to dGGG triplets in DNA. Hole localization in a dGGG sequence accounts for ∼26% of T•+ formed under aerobic conditions in 9. Reduction to yield thymidine is also quantified. 5-Formyl-2'-deoxyuridine is formed in low yield in DNA when T•+ is independently generated. This is inconsistent with mechanistic proposals concerning product formation from electron transfer in poly(dA-T) sequences, following hole injection by a photoexcited anthraquinone. Additional evidence that is inconsistent with the original mechanism was obtained using hole injection by a photoexcited anthraquinone in DNA. Instead of requiring the intermediacy of T•+, the strand damage patterns observed in those studies, in which thymidine is oxidized, are reproduced by independent generation of 2'-deoxyadenosin- N6-yl radical (dA•). Tandem lesion formation by dA• provides the basis for an alternative mechanism for thymidine oxidation ascribed to hole migration in poly(dA-T) sequences. Overall, these experiments indicate that the final products formed following DNA hole transfer in poly(dA-T) sequences do not result from deprotonation or hydration of T•+, but rather from deprotonation of the more stable dA•+, to form dA•, which produces tandem lesions in which 5'-flanking thymidines are oxidized.


Assuntos
Poli dA-dT/química , Sequência de Bases , Dano ao DNA , Transporte de Elétrons , Análise de Sequência de DNA
14.
Chemistry ; 24(30): 7671-7682, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29479750

RESUMO

Photoactivated DNA interstrand cross-linking agents have a wide range of biological applications. Recently, several aryl boronates have been reported to induce DNA interstrand cross-link (ICL) formation via carbocations upon photoirradiation. Herein, we synthesized a series of new bifunctional phenyl compounds to test the generality of such a mechanism, and to understand how the chemical structure influences carbocation formation and the DNA cross-linking process. These compounds efficiently form DNA ICLs via generated benzyl cations upon 350 nm irradiation. The DNA cross-linking efficiency and the pathway for carbocation generation depend on both the aromatic substituents and the leaving groups. Bromine as a leaving group facilitates the DNA cross-linking process in comparison with trimethyl ammonium salt. Both electron-donating and -withdrawing substituents induce bathochromic shifts, which favor photoinduced DNA ICL formation. For the bromides, the benzyl cation intermediates were generated through oxidation of the corresponding benzyl radicals. However, for the ammonia salts, the benzyl cations were formed through two pathways: either through oxidation of the benzyl radicals or by direct heterolysis of the C-N bond. Photoinduced C-N homolysis to form benzyl radicals occurred with compounds having donating substituents, whereas direct heterolysis of the C-N bond occurred with those bearing withdrawing substituents. The adducts formed between 1 a and four natural nucleosides were characterized, indicating that the alkylation sites for the photogenerated benzyl cations are dG, dA, and dC.


Assuntos
Compostos de Benzil/química , Cátions/química , Reagentes de Ligações Cruzadas/química , DNA/química , Alquilação , Dano ao DNA , Elétrons , Oxirredução , Sais
15.
J Org Chem ; 82(20): 11072-11083, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28994287

RESUMO

Thymidine radical cation (1) is produced by ionizing radiation and has been invoked as an intermediate in electron transfer in DNA. Previous studies on its structure and reactivity have utilized thymidine as a precursor, which limits quantitative product analysis because thymidine is readily reformed from 1. In this investigation, radical cation 1 is independently generated via ß-heterolysis of a pyrimidine radical generated photochemically from an aryl sulfide. Thymidine is the major product (33%) from 1 at pH 7.2. Diastereomeric mixtures of thymidine glycol and the corresponding 5-hydroxperoxides resulting from water trapping of 1 are formed. Significantly lower yields of products such as 5-formyl-2'-deoxyuridine that are ascribable to deprotonation from the C5-methyl group of 1 are observed. Independent generation of the N3-methyl analogue of 1 (NMe-1) produces considerably higher yields of products derived from water trapping, and these products are formed in much higher yields than those attributable to the C5-methyl group deprotonation in NMe-1. N3-Methyl-thymidine is, however, the major product and is produced in as high as 70% yield when the radical cation is produced in the presence of excess thiol. The effects of exogenous reagents on product distributions are consistent with the formation of diffusively free radical cations (1, NMe-1). This method should be compatible with producing radical cations at defined positions within DNA.


Assuntos
Timidina/química , Cátions/síntese química , Cátions/química , Radicais Livres/síntese química , Radicais Livres/química , Conformação Molecular , Timidina/síntese química
16.
Chembiochem ; 17(21): 2046-2053, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27558701

RESUMO

Coumarin moieties react with thymine and cytosine in DNA by photoinduced [2+2] cycloaddition, which allows quantitative DNA interstrand crosslink (ICL) formation. Here, we report the application of coumarin analogues for DNA photoligation and the rearrangement of coumarin-induced ligation to ICL products. Both DNA sequences and the linker units at position 4 of the coumarin moieties affected coumarin-induced DNA photoligation. A flexible linker unit favored DNA ICL formation but led to inefficient photoligation, whereas coumarins without linker units greatly increased DNA photoligation efficiency. DNA photoligation induced by the coumarin moiety was photoswitchable. Ligation products were formed between coumarin and dT or dC upon 350 nm irradiation but reverted to the original single-stranded oligodeoxyribonucleotides (ODNs) upon 254 nm irradiation. Rearrangement of ligated ODNs into ICL products occurred during the switchable (350 nm/254 nm) processes. Additionally, photoinduced cleavage of coumarin 3 occurred with dC-3 cycloadducts upon 254 nm irradiation, which was confirmed by mass spectrometry analysis.


Assuntos
Cumarínicos/química , Cumarínicos/farmacologia , Reagentes de Ligações Cruzadas/química , DNA/química , DNA/efeitos dos fármacos , Humanos , Estrutura Molecular , Processos Fotoquímicos
17.
Chem Res Toxicol ; 28(5): 919-26, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25844639

RESUMO

Four novel photoactivated binitroimidazole prodrugs were synthesized. These agents produced DNA interstrand cross-links (ICLs) and direct strand breaks (DSB) upon UV irradiation, whereas no or very few DNA ICLs and DSBs were observed without UV treatment. Although these four molecules (1-4) contain the same binitroimidazole moiety, they bear four different leaving groups, which resulted in their producing different yields of DNA damage. Compound 4, with nitrogen mustard as a leaving group, showed the highest ICL yield. Surprisingly, compounds 1-3, without any alkylating functional group, also induced DNA ICL formation, although they did so with lower yields, which suggested that the binitroimidazole moiety released from UV irradiation of 1-3 is capable of cross-linking DNA. The DNA cross-linked products induced by these compounds were completely destroyed upon 1.0 M piperidine treatment at 90 °C (leading to cleavage at dG sites), which revealed that DNA cross-linking mainly occurred via alkylation of dGs. We proposed a possible mechanism by which alkylating agents were released from these compounds. HRMS and NMR analysis confirmed that free nitrogen mustards were generated by UV irradiation of 4. Suppression of DNA ICL and DSB formation by a radical trap, TEMPO, indicated the involvement of free radicals in the photo reactions of 3 and 4 with DNA. On the basis of these data, we propose that UV irradiation of compounds 1-4 generated a binitroimidazole intermediate that cross-links DNA. The higher ICL yield observed with 4 resulted from the amine effector nitrogen mustard released from UV irradiation.


Assuntos
Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Quebras de DNA/efeitos dos fármacos , Quebras de DNA/efeitos da radiação , DNA/genética , Nitroimidazóis/química , Nitroimidazóis/farmacologia , Alquilantes/química , Alquilantes/farmacologia , DNA/química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Compostos de Mostarda Nitrogenada/química , Compostos de Mostarda Nitrogenada/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos da radiação , Raios Ultravioleta
18.
J Org Chem ; 79(23): 11359-69, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25372021

RESUMO

The coumarin analogues have been widely utilized in medicine, biology, biochemistry, and material sciences. Here, we report a detailed study on the reactivity of coumarins toward DNA. A series of coumarin analogues were synthesized and incorporated into oligodeoxynucleotides. A photoinduced [2 + 2] cycloaddition occurs between the coumarin moiety and the thymidine upon 350 nm irradiation forming both syn- and anti-cyclobutane adducts (17 and 18), which are photoreversible by 254/350 nm irradiation in DNA. Quantitative DNA interstrand cross-link (ICL) formation was observed with the coumarin moieties containing a flexible two-carbon or longer chain. DNA cross-linking by coumarins shows a kinetic preference when flanked by an A:T base pair as opposed to a G:C pair. An efficient photoinduced electron transfer between coumarin and dG slows down ICL formation. ICL formation quenches the fluorescence of coumarin, which, for the first time, enables fast, easy, and real-time monitoring of DNA cross-linking and photoreversibility via fluorescence spectroscopy. It can be used to detect the transversion mutation between pyrimidines and purines. Overall, this work provides new insights into the biochemical properties and possible toxicity of coumarins. A quantitative, fluorescence-detectable, and photoswitchable DNA cross-linking reaction of the coumarin moieties can potentially serve as mechanistic probes and tools for bioresearch without disrupting native biological environment.


Assuntos
Cumarínicos/química , Reagentes de Ligações Cruzadas/química , DNA/química , Oligodesoxirribonucleotídeos/química , Timina/química , Pareamento de Bases , Fenômenos Bioquímicos , Fluorescência , Cinética
19.
Angew Chem Int Ed Engl ; 53(27): 7001-5, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24840115

RESUMO

A coumarin-modified pyrimidine nucleoside (1) has been synthesized using a Cu(I)-catalyzed click reaction and incorporated into oligodeoxynucleotides (ODNs). Interstrand cross-links are produced upon irradiation of ODNs containing 1 at 350 nm. Cross-linking occurs through a [2+2] cycloaddition reaction with the opposing thymidine, 2'-deoxycytidine, or 2'-deoxyadenosine. A much higher reactivity was observed with dT than dC or dA. Irradiation of the dT-1 and dC-1 cross-linked products at 254 nm leads to a reversible ring-opening reaction, while such phenomena were not observed with dA-1 adducts. The reversible reaction is ultrafast and complete within 50-90 s. Consistent photoswitching behavior was observed over 6 cycles of irradiation at 350 nm and 254 nm. To the best of our knowledge, this is the first example of photoswitchable interstrand cross-linking formation induced by a modified pyrimidine nucleoside.


Assuntos
Cumarínicos/química , DNA/química , Nucleosídeos de Pirimidina/química , Sequência de Bases , Química Click , Reação de Cicloadição , Desoxiadenosinas/química , Desoxicitidina/química , Oligodesoxirribonucleotídeos/química , Nucleosídeos de Pirimidina/síntese química , Timidina/química , Raios Ultravioleta
20.
Bioconjug Chem ; 24(7): 1226-34, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23806001

RESUMO

A novel nonfluorescent alkyne-modified coumarin phosphoramidite was synthesized and successfully incorporated into oligonucleotides, which were then used in highly efficient DNA interstrand cross-linking and ligation reactions via "click" chemistry. The template-directed fluorogenic ligation "click" chemistry reaction was used for single nucleotide polymorphism analysis, where the target DNA catalyzes the ligation of two nonfluorescent probes to generate a fluorescent product. The upstream oligonucleotide probe is a nonfluorescent alkyne-modified coumarin and the downstream probe is an azide-modified oligonucleotide. When bound to a fully complementary template, the oligonucleotides ligated to produce a fluorescent product with a fluorophore at the ligation point. Wild-type and mutant p53 alleles were used to demonstrate that template-directed fluorogenic oligonucleotide ligation is sequence-specific and is capable of single nucleotide discrimination under mild conditions, even without the removal of unreacted probes.


Assuntos
Corantes Fluorescentes/química , Genes p53 , Oligonucleotídeos/química , Polimorfismo de Nucleotídeo Único , Moldes Genéticos , Sequência de Bases , Humanos , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA