Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446940

RESUMO

Methyl acetate (MA) has a wide range of applications as an important industrial chemical. Traditional MOR zeolite for carbonylation of DME to MA accumulated carbon easily because of a 12-membered ring (12 MR) channel. In this work, we innovatively developed the method of recrystallization ferrierite (FER) zeolite using special chelating ligand sodium oleate which can affect ions other than alkali metals. The characterization results of N2 adsorption, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) show that hydrothermal recrystallization of ferrierite using sodium oleate resulted in a higher Si/Al ratio, a bigger specific surface area and a larger number of Brønsted acid sites in the eight MR channels, which was more efficient in the reaction of carbonylation of dimethyl ether than ordinary alkali treatment.


Assuntos
Éteres Metílicos , Zeolitas , Zeolitas/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Nanoscale ; 13(9): 5103-5114, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33650600

RESUMO

Efficient conversion of light alkanes is of essential significance for enhancing the utilization efficiency of resources and exploring the activation and evolution regulation of C-C and C-H bonds in stable molecules. The processes are often executed with catalysts under harsh conditions. The olefin yield and metal stability have been the long-standing concerns. Herein, we report a facile strategy of constructing a bifunctional Pt/HZSM-5-based catalyst by two-step atomic layer deposition (ALD) to achieve a high light olefin formation rate of 0.48 mmol gcat-1·min-1 in the catalytic cracking of n-butane at 600 °C, which is ∼2.2 times higher than that of the conventional Pt/HZSM-5 catalyst (0.22 mmol gcat-1·min-1). Moreover, the bifunctional Pt/HZSM-5-based catalyst exhibited outstanding recyclability and excellent metal stability against sintering in comparison with conventional Pt/HZSM-5. Detailed microscopic and spectroscopic characterization studies demonstrate that the metal oxide (TiO2 or Al2O3) coating not only prevents the metal from high-temperature sintering, but also regulates the proportion of coordinately unsaturated platinum surface atoms. Theoretical calculations further confirm the preference of nucleation of TiO2 or Al2O3 on coordinately unsaturated platinum sites, which in turn modulates the bifunctional dehydrogenation-cracking pathway to improve the olefin formation rate.

3.
Dalton Trans ; 46(32): 10734-10741, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28766663

RESUMO

Constructing a semiconductor type II structure is an effective way to enhance the photogenerated charge separation efficiency. The separation and migration of interfacial photogenerated carriers is a key factor, which influences the photocatalytic activity. In this study, a conformal Al2O3 recombination barrier layer was introduced at the interface between TiO2 nanowires and CdSe nanoparticles, and the application of this composite in photoelectrocatalytic (PEC) hydrogen production was explored. Under visible-light irradiation, the photocurrent response and PEC hydrogen evolution performance increased step-by-step from TiO2 to the Al2O3/TiO2 and CdSe/Al2O3/TiO2 nanowire arrays. Moreover, the H2 evolution rate of CdSe/Al2O3/TiO2 was much higher than that of a different configuration, Al2O3/CdSe/TiO2. The enhanced PEC hydrogen evolution performance was attributed to the prevention of the interfacial charge recombination caused by the Al2O3 recombination barrier layer. Our results may shed new light on developing novel and highly efficient photocatalysts using rational interface design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA