Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 237(2): 601-614, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239093

RESUMO

Heterostyly, a plant sexual polymorphism controlled by the S-locus supergene, has evolved numerous times among angiosperm lineages and represents a classic example of convergent evolution in form and function. Determining whether underlying molecular convergence occurs could provide insights on constraints to floral evolution. Here, we investigated S-locus genes in distylous Gelsemium (Gelsemiaceae) to determine whether there is evidence of molecular convergence with unrelated distylous species. We used several approaches, including anatomical measurements of sex-organ development and transcriptome and whole-genome sequencing, to identify components of the S-locus supergene. We also performed evolutionary analysis with candidate S-locus genes and compared them with those reported in Primula and Turnera. The candidate S-locus supergene of Gelsemium contained four genes, of which three appear to have originated from gene duplication events within Gelsemiaceae. The style-length genes GeCYP in Gelsemium and CYP734A50 in Primula likely arose from duplication of the same gene, CYP734A1. Three out of four S-locus genes in Gelsemium elegans were hemizygous, as previously reported in Primula and Turnera. We provide genomic evidence on the genetic convergence of the supergene underlying distyly among distantly related angiosperm lineages and help to illuminate the genetic architecture involved in the evolution of heterostyly.


Assuntos
Magnoliopsida , Primula , Genômica , Primula/genética , Plantas , Duplicação Gênica , Flores/genética
2.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895172

RESUMO

Bacterial antibiotic resistance, especially the emergence of multidrug-resistant (MDR) strains, urgently requires the development of effective treatment strategies. It is always of interest to delve into the mechanisms of resistance to current antibiotics and target them to promote the efficacy of existing antibiotics. In recent years, non-antibiotic compounds have played an important auxiliary role in improving the efficacy of antibiotics and promoting the treatment of drug-resistant bacteria. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against MDR bacteria. In this review, we first briefly summarize the main resistance mechanisms of current antibiotics. In addition, we propose several strategies to enhance antibiotic action based on resistance mechanisms. Then, the research progress of non-antibiotic compounds that can promote antibiotic-resistant bacteria through different mechanisms in recent years is also summarized. Finally, the development prospects and challenges of these non-antibiotic compounds in combination with antibiotics are discussed.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana
3.
Xenobiotica ; 52(1): 46-53, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35227161

RESUMO

Macleaya cordata extracts (MCE) are listed as feed additives in animal production by the European Food Authority. The core components of MCE are mainly sanguinarine (SA) and chelerythrine (CHE). This study aims to investigate sex differences in the pharmacokinetics and tissue residues of MCE in rats.Male and female rates were intragastrically administered MCE (1.25 mg·kg-1 body weight and 12.5 mg·kg-1 body weight dose for 28 days). SA and CHE concentrations were determined using high-performance liquid chromatography/tandem mass spectrometry.The peak plasma concentration (Cmax) and area under the curve (AUC) of both CHE and SA were higher in female than in male rats (12.5 mg·kg-1 body weight group), whereas their half-life (T1/2) and apparent volume of distribution (Vd) was lower (p < 0.05). Tissue rfesidue analysis indicated that SA and CHE were more distributed in male than in female rats and were highly distributed in the caecum and liver. SA and CHE were completely eliminated from the liver, kidney, lung, heart, spleen, leg muscle, and caecum after 120 h, indicating they did not accumulate in rats for a long time.Overall, we found that the pharmacokinetics and tissue residues of SA and CHE of male and female rats showed sex differences.


Assuntos
Papaveraceae , Caracteres Sexuais , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Masculino , Espectrometria de Massas , Papaveraceae/química , Extratos Vegetais , Ratos
4.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335173

RESUMO

The distribution of pharmatically important alkaloids gelsemine, koumine, and gelsenicine in Gelsemium elegans tissues is a hot topic attracting research attention. Regretfully, the in planta visual distribution details of these alkaloids are far from clear although several researches reported the alkaloid quantification in G. elegans by LC-MS/MS. In this study, mass imaging spectrometry (MSI) was employed to visualize the in situ visualization of gelsemine, koumine, and gelsenicine in different organs and tissues of G. elegans at different growth stages, and the relative quantification of three alkaloids were performed according to the image brightness intensities captured by the desorption electrospray ionization MSI (DESI-MSI). The results indicated that these alkaloids were mainly accumulated in pith region and gradually decreased from pith to epidermis. Interestingly, three alkaloids were found to be present in higher abundance in the leaf vein. Along with the growth and development, the accumulation of these alkaloids was gradually increased in root and stem. Moreover, we employed LC-MS/MS to quantify three alkaloids and further validated the in situ distributions. The content of koumine reached 249.2 µg/g in mature roots, 272.0 µg/g in mature leaves, and 149.1 µg/g in mature stems, respectively, which is significantly higher than that of gelsemine and gelsenicine in the same organ. This study provided an accurately in situ visualization of gelsemine, koumine, and gelsenicine in G. elegans, and would be helpful for understanding their accumulation in plant and guiding application.


Assuntos
Alcaloides , Espectrometria de Massas em Tandem , Cromatografia Líquida , Alcaloides Indólicos
5.
Molecules ; 27(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458803

RESUMO

Gelsemium elegans (Gardn. & Champ.) Benth is a toxic flowering plant in the family Loganiaceae used to treat skin diseases, neuralgia and acute pain. The high toxicity of G. elegans restricts its development and clinical applications, but in veterinary applications, G. elegans has been fed to pigs as a feed additive without poisoning. However, until now, the in vivo processes of the multiple components of G. elegans have not been studied. This study investigates the excretion, metabolism and tissue distribution of the multiple components of G. elegans after feeding it to pigs in medicated feed. Pigs were fed 2% G. elegans powder in feed for 45 days. The plasma, urine, bile, feces and tissues (heart, liver, lung, spleen, brain, spinal cord, adrenal gland, testis, thigh muscle, abdominal muscle and back muscle) were collected 6 h after the last feeding and analyzed using high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Five natural products in plasma, twelve natural products and five metabolites in urine, and three natural products in feces were characterized, suggesting that multiple components from G. elegans were excreted in the urine. However, ten natural products and four metabolites were detected in bile samples, which suggested that G. elegans is involved in enterohepatic circulation in pigs. A total of seven of these metabolites were characterized, and four metabolites were glucuronidated metabolites. Ten natural products and six metabolites were detected in the tissues, which indicates that G. elegans is widely distributed in tissues and can cross the blood-brain barrier. Among the characterized compounds, a highly toxic gelsedine-type alkaloid from G. elegans was the main compound detected in all biological samples. This is the first study of the excretion, metabolism and tissue distribution of multiple components from G. elegans in pigs. These data can provide an important reference to explain the efficacy and toxicity of G. elegans. Additionally, the results of the tissue distribution of G. elegans are of great value for further residue depletion studies and safety evaluations of products of animals fed G. elegans.


Assuntos
Alcaloides , Gelsemium , Alcaloides/química , Animais , Cromatografia Líquida de Alta Pressão , Gelsemium/química , Masculino , Extratos Vegetais , Suínos , Distribuição Tecidual
6.
Antimicrob Agents Chemother ; 65(7): e0007121, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33903105

RESUMO

Aeromonas hydrophila, a heterotrophic and Gram-negative bacterium, has attracted considerable attention owing to the increasing prevalence of reported infections. Colistin is a last-resort antibiotic that can treat life-threatening infections caused by multidrug-resistant Gram-negative bacteria. However, the mechanisms underlying colistin resistance in A. hydrophila remain unclear. The present study reveals four novel colistin resistance mechanisms in A. hydrophila: (i) EnvZ/OmpR upregulates the expression of the arnBCADTEF operon to mediate lipopolysaccharide (LPS) modification by 4-amino-4-deoxy-l-arabinose, (ii) EnvZ/OmpR regulates the expression of the autotransporter gene3832 to decrease outer membrane permeability in response to colistin, (iii) deletion of envZ/ompR activates PhoP/PhoQ, which functions as a substitute two-component system to mediate the addition of phosphoethanolamine to lipid A via pmrC, and (iv) the mlaFD173A mutant confers high-level colistin resistance via upregulation of the Mla pathway. The EnvZ/OmpR two-component system-mediated resistance mechanism is the leading form of colistin resistance in A. hydrophila, which enables it to rapidly generate low- to medium-level colistin resistance. As colistin concentrations in the environment continue to rise, antibiotic resistance mediated by EnvZ/OmpR becomes insufficient to ensure bacterial survival. Consequently, A. hydrophila has developed an mlaF mutation that results in high-level colistin resistance. Our findings indicate that A. hydrophila can thrive in a complex environment through various colistin resistance mechanisms.


Assuntos
Aeromonas hydrophila , Colistina , Aeromonas hydrophila/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Óperon
7.
Arterioscler Thromb Vasc Biol ; 40(4): 958-972, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078339

RESUMO

OBJECTIVE: Angiocrine factors, mediating the endothelial-mural cell interaction in vascular wall construction as well as maintenance, are incompletely characterized. This study aims to investigate the role of endothelial cell-derived FSTL1 (follistatin-like protein 1) in vascular homeostasis. Approach and Results: Using conditional knockout mouse models, we show that loss of FSTL1 in endothelial cells (Fstl1ECKO) led to an increase of pulmonary vascular resistance, resulting in the heart regurgitation especially with tricuspid valves. However, this abnormality was not detected in mutant mice with Fstl1 knockout in smooth muscle cells or hematopoietic cells. We further showed that there was excessive αSMA (α-smooth muscle actin) associated with atrial endocardia, heart valves, veins, and microvessels after the endothelial FSTL1 deletion. There was also an increase in collagen deposition, as demonstrated in livers of Fstl1ECKO mutants. The SMAD3 (mothers against decapentaplegic homolog 3) phosphorylation (pSMAD3) was significantly enhanced, and pSMAD3 staining was colocalized with αSMA in vein walls, suggesting the activation of TGFß (transforming growth factor ß) signaling in vascular mural cells of Fstl1ECKO mice. Consistently, treatment with a TGFß pathway inhibitor reduced the abnormal association of αSMA with the atria and blood vessels in Fstl1ECKO mutant mice. CONCLUSIONS: The findings imply that endothelial FSTL1 is critical for the homeostasis of vascular walls, and its insufficiency may favor cardiovascular fibrosis leading to heart failure.


Assuntos
Endotélio Vascular/fisiopatologia , Fibrose/fisiopatologia , Proteínas Relacionadas à Folistatina/fisiologia , Proteína Smad3/fisiologia , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Proteínas Relacionadas à Folistatina/metabolismo , Homeostase , Humanos , Camundongos Knockout , Fosforilação , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Insuficiência da Valva Tricúspide/fisiopatologia , Resistência Vascular
8.
Xenobiotica ; 51(11): 1264-1270, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33538636

RESUMO

The objective of this study was to investigate the single- and multiple-dose pharmacokinetics of chelerythrine (CHE) and its metabolite, dihydrochelerythrine (DHCHE), after oral and IM administrations in pigs.Six crossbreed (Landrace × Large White) female pigs (7-8 weeks old; 24.1 ± 2.6 kg bw) administered oral and IM CHE at a dose of 0.1 mg/kg orally and intramuscularly in a cross-over design. Multiple oral administration was performed at 0.1 mg/kg a time, three times a day at 8-h intervals for three consecutive days. Blood samples were collected from the anterior vena cava and placed into heparinized centrifuge tubes before dosing (time 0 h) and at different times after oral and IM administrations. Pre-treatment plasma was analysed by high-performance liquid chromatography-tandem mass spectrometry.After IM administration, CHE and DHCHE rapidly reached peak concentrations (Cmax, 69.79 ± 15.41 and 3.47 ± 1.23 ng/mL) at 0.42 ± 0.13 and 0.33 ± 0.13 h, respectively. After single oral administration, CHE and DHCHE rapidly increased to reach Cmax of 5.04 ± 1.00 and 1.21 ± 0.35 ng/mL at 1.83 ± 0.26 and 1.67 ± 0.26 h, respectively. The half-life (T1/2) was 2.03 ± 0.26 and 2.56 ± 1.00 h for CHE and DHCHE, respectively. After multiple oral administration, the average steady-state concentrations (Css) of CHE and DHCHE were 2.51 ± 0.40 and 0.6 ± 0.06 ng/mL, respectively.CHE is metabolized rapidly after a single oral administration, multiple daily doses and long-term use of CHE are recommended.


Assuntos
Cromatografia Líquida de Alta Pressão , Administração Oral , Animais , Área Sob a Curva , Benzofenantridinas , Disponibilidade Biológica , Feminino , Meia-Vida , Injeções Intramusculares , Espectrometria de Massas , Suínos
9.
Rapid Commun Mass Spectrom ; 34(17): e8843, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32453886

RESUMO

RATIONALE: Gelsemium elegans (G. elegans) is highly toxic to humans and rats but has insecticidal and growth-promoting effects on pigs and goats. However, the mechanisms behind the toxicity differences of G. elegans are unclear. Gelsenicine, isolated from G. elegans, has been reported to be a toxic alkaloid. METHODS: In this study, the in vitro metabolism of gelsenicine was investigated and compared for the first time using human (HLM), pig (PLM), goat (GLM) and rat (RLM) liver microsomes and high-performance liquid chromatography/mass spectrometry (HPLC/MS). RESULTS: In total, eight metabolites (M1-M8) were identified by using high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOF-MS). Two main metabolic pathways were found in the liver microsomes of the four species: demethylation at the methoxy group on the indole nitrogen (M1) and oxidation at different positions (M2-M8). M8 was identified only in the GLM. The degradation ratio of gelsenicine and the relative percentage of metabolites produced during metabolism were determined by high-performance liquid chromatography/tandem mass spectrometry (HPLC/QqQ-MS/MS). The degradation ratio of gelsenicine in liver microsomes decreased in the following order: PLM ≥ GLM > HLM > RLM. The production of M1 decreased in the order of GLM > PLM > RLM > HLM, the production of M2 was similar among the four species, and the production of M3 was higher in the HLM than in the liver microsomes of the other three species. CONCLUSIONS: Based on these results, demethylation was speculated to be the main gelsenicine detoxification pathway, providing vital information to better understand the metabolism and toxicity differences of G. elegans among different species.


Assuntos
Alcaloides Indólicos , Microssomos Hepáticos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Gelsemium , Cabras , Humanos , Alcaloides Indólicos/análise , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Espectrometria de Massas/métodos , Ratos , Suínos
10.
J Vet Pharmacol Ther ; 43(2): 208-214, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31943246

RESUMO

Sanguinarine (SA) is a benzo[c] phenanthridine alkaloid which has a variety of pharmacological properties. However, very little was known about the pharmacokinetics of SA and its metabolite dihydrosanguinarine (DHSA) in pigs. The purpose of this work was to study the intestinal metabolism of SA in vitro and in vivo. Reductive metabolite DHSA was detected during incubation of SA with intestinal mucosa microsomes, cytosol, and gut flora. After oral (p.o.) administration of SA, the result showed SA might be reduced to DHSA in pig intestine. After i.m. administration, SA and DHSA rapidly increased to reach their peak concentrations (Cmax , 30.16 ± 5.85, 5.61 ± 0.73 ng/ml, respectively) at 0.25 hr. Both compounds were completely eliminated from the plasma after 24 hr. After single oral administration, SA and DHSA rapidly increased to reach their Cmax (3.41 ± 0.36, 2.41 ± 0.24 ng/ml, respectively) at 2.75 ± 0.27 hr. The half-life (T1/2 ) values were 2.33 ± 0.11 hr and 2.20 ± 0.12 hr for SA and DHSA, respectively. After multiple oral administration, the average steady-state concentrations (Css ) of SA and DHSA were 3.03 ± 0.39 and 1.42 ± 0.20 ng/ml. The accumulation indexes for SA and DHSA were 1.21 and 1.11. The work reported here provides important information on the metabolism sites and pharmacokinetic character of SA. It explains the reasons for low toxicity of SA, which is useful for the evaluation of its performance.


Assuntos
Benzofenantridinas/farmacocinética , Isoquinolinas/farmacocinética , Suínos/metabolismo , Administração Oral , Animais , Área Sob a Curva , Benzofenantridinas/administração & dosagem , Benzofenantridinas/metabolismo , Meia-Vida , Injeções Intramusculares , Isoquinolinas/administração & dosagem , Isoquinolinas/metabolismo
11.
Anal Bioanal Chem ; 411(17): 3857-3870, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073732

RESUMO

The present paper describes a novel two-dimensional liquid chromatography (2D-LC) system, which is comprised of a first-dimensional ion exchange chromatography (IEX1) column, trap column, and second-dimensional reversed-phase chromatography (RP2) column system. The biological sample is separated by the first-dimensional LC using an IEX column to remove interferences. The analytes are transferred to the trap column after heart-cutting. Then, the analytes are transferred to the second-dimensional LC using an RP2 column for further separation and ultraviolet detection. This 2D-LC system can offer a large injection volume to provide sufficient sensitivity and exhibits a strong capacity for removing interferences. Here, the determination of three monoterpene indole alkaloids (MIAs; gelsemine, koumine, and humantenmine) from Gelsemium in biological matrices (plasma, tissue, and urine) was used this 2D-LC system. After a rapid and easy sample preparation method based on protein precipitation, the sample was injected into the 2D-LC. The method was developed and validated in terms of the selectivity, LOD, LOQ, linearity, precision, accuracy, and stability. The sample preparation time for the three MIAs was 15 min. The LOD for these compounds was 10 ng/mL, which was lower than the developed HPLC methods. The results showed that this method had good quantitation performance and allowed the determination of gelsemine, koumine, and humantenmine in biological matrices. The method is rapid, exhibits high selectivity, has good sensitivity, and is low-cost, thus making it well-suited for application in the pharmaceutical and toxicological analysis of Gelsemium. Graphical abstract.


Assuntos
Alcaloides/análise , Cromatografia por Troca Iônica/instrumentação , Cromatografia de Fase Reversa/instrumentação , Alcaloides Indólicos/análise , Alcaloides/sangue , Alcaloides/normas , Alcaloides/urina , Cromatografia por Troca Iônica/métodos , Cromatografia de Fase Reversa/métodos , Alcaloides Indólicos/sangue , Alcaloides Indólicos/normas , Alcaloides Indólicos/urina , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta/métodos
12.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754638

RESUMO

Medicinal herbal plants have been commonly used for intervention in different diseases and improvement of health worldwide. Koumine, an alkaloid monomer found abundantly in Gelsemium plants, can be effectively used as an antioxidant. The purpose of this study was to evaluate the potential protective effect of koumine against hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in porcine intestinal epithelial cell line (IPEC-J2 cells). MTT assays showed that koumine significantly increased cell viability in H2O2-mediated IPEC-J2 cells. Preincubation with koumine ameliorated H2O2-medicated apoptosis by decreasing reactive oxygen species (ROS) production, and efficiently suppressed the lactate dehydrogenase (LDH) release and malondialdehyde (MDA) production. Moreover, a loss of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activities was restored to normal level in H2O2-induced IPEC-J2 cells upon koumine exposure. Furthermore, pretreatment with koumine suppressed H2O2-mediated loss of mitochondrial membrane potential, caspase-9 and caspase-3 activation, decrease of Bcl-2 expression and elevation of Bax expressions. Collectively, the results of this study indicated that koumine possesses the cytoprotective effects in IPEC-J2 cells during exposure to H2O2 by suppressing production of ROS, inhibiting the caspase-3 activity and influencing the expression of Bax and Bcl-2. Koumine could potentially serve as a protective effect against H2O2-induced apoptosis.


Assuntos
Antioxidantes/farmacologia , Gelsemium/química , Peróxido de Hidrogênio/farmacologia , Alcaloides Indólicos/farmacologia , Extratos Vegetais/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Animais , Antioxidantes/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Alcaloides Indólicos/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Suínos
13.
Rapid Commun Mass Spectrom ; 32(23): 2047-2054, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30252168

RESUMO

RATIONALE: N-Methylcanadine and N-methylstylopine are two types of isoquinoline alkaloids which are considered to be the main medicinally active constituents of the genus Papaveraceae. However, to date, no metabolism studies of N-methylcanadine and N-methylstylopine have been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of these two alkaloids in rat liver S9. METHODS: N-Methylcanadine or N-methylstylopine was incubated with rat liver S9 for 1 h, and then the incubation mixture was processed with 15% trichloroacetic acid. High-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS) as a reliable analytical method was used. The structural characterization of these metabolites was performed by the combination of the accurate MS/MS spectra and the known elemental composition. RESULTS: As a result, a total of four metabolites of N-methylcanadine and five metabolites of N-methylstylopine in rat liver S9 were tentatively identified. The cleavage of the methylenedioxy group of the drugs was the main metabolic pathway of N-methylcanadine and N-methylstylopine. CONCLUSIONS: The present study is the first in vitro metabolic investigation of N-methylcanadine and N-methylstylopine in rat liver S9 using a reliable HPLC/QqTOF-MS method. The metabolic pathways of N-methylcanadine and N-methylstylopine are tentatively proposed. This work lays the foundation for the in vivo metabolism of the two compounds in animals.


Assuntos
Alcaloides/química , Alcaloides de Berberina/química , Cromatografia Líquida de Alta Pressão/métodos , Microssomos Hepáticos/química , Papaveraceae/química , Extratos Vegetais/química , Espectrometria de Massas em Tandem/métodos , Alcaloides/metabolismo , Animais , Alcaloides de Berberina/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Extratos Vegetais/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Rapid Commun Mass Spectrom ; 32(1): 19-22, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29027298

RESUMO

RATIONALE: Gelsemine has been extensively studied because of its anti-tumor, immunomodulatory, insecticidal itching and other significant effects. However, limited information on the pharmacokinetics and metabolism of gelsemine has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of gelsemine in rat liver S9 by using rapid and accurate high-performance liquid chromatography/ quadrupole-time-of-flight mass spectrometry (HPLC/QqTOF-MS). METHODS: The incubation mixture was processed with 15% trichloroacetic acid. Multiple scans of gelsemine metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only 30 min. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the parent drug. RESULTS: Five metabolites of gelsemine were identified in rat liver S9. Of these, four metabolites of gelsemine were identified for the first time. The present results showed that the metabolic pathways of gelsemine are oxidation, demethylation, and dehydrogenation in rat liver S9. CONCLUSIONS: In this study, metabolites of gelsemine in liver S9 were identified and elucidated firstly using the HPLC/QqTOF-MS method. The proposed metabolic pathways of gelsemine in liver S9 will provide a basis for further studies of the in vivo metabolism of gelsemine in animals and humans.


Assuntos
Alcaloides/metabolismo , Gelsemium/química , Fígado/metabolismo , Extratos Vegetais/metabolismo , Alcaloides/química , Animais , Cromatografia Líquida de Alta Pressão , Fígado/química , Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/química , Ratos
15.
Exp Mol Pathol ; 103(3): 242-248, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29104012

RESUMO

Previous investigations have shown that inflammation induces changes in lipid and lipoprotein metabolism, and increased expression of angiopoietin-like protein 3 (ANGPTL3) contributes to the development of dyslipidemia. Here we investigated whether there is a correlation between increased ANGPTL3 expression and dyslipidemia in mastitis mice. Thirty mice were divided into two groups: control group and Staphylococcus aureus (S. aureus)-induced mastitis mice group. Changes in the levels of blood lipids [total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)]; activity of myeloperoxidase (MPO); concentrations of plasma inflammation biomarkers [interferon-γ (IFNγ), tumor necrosis factor α (TNFα), and interleukin-1α (IL-1α)]; concentration of plasma ANGPTL3 protein; lipoprotein lipase (LPL) activities in postheparin plasma; expressions of hepatic N-acetylgalactosaminyltransferase 2 (GALNT2), hepatic ANGPTL3 and adipose LPL were determined. The major results indicated specific pathological mammary tissue changes, elevated MPO activity, reduced GALNT2 mRNA expression, elevated ANGPTL3 mRNA and protein expression and reduced LPL mRNA and protein expression. In plasma samples the S.aureus infused mice displayed elevated ANGPTL3 protein concentration, TG, TC and LDL-C levels, and reduced postheparin LPL activities and HDL-C level. The data suggests that ANGPTL3 is part of the machinery causing dyslipidemia majorily via LPL inhibition in mastitis mice.


Assuntos
Proteínas Semelhantes a Angiopoietina/sangue , Dislipidemias/sangue , Inflamação/sangue , Mastite/sangue , Proteína 3 Semelhante a Angiopoietina , Animais , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dislipidemias/patologia , Feminino , Humanos , Inflamação/microbiologia , Inflamação/patologia , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/sangue , Mastite/microbiologia , Mastite/patologia , Camundongos , N-Acetilgalactosaminiltransferases/metabolismo , Peroxidase/sangue , Staphylococcus aureus/patogenicidade , Triglicerídeos/sangue , Polipeptídeo N-Acetilgalactosaminiltransferase
16.
Rapid Commun Mass Spectrom ; 31(3): 309-314, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27870537

RESUMO

RATIONALE: Koumine is one of the major components of total alkaloids from Gelsemium. Koumine possesses a variety of interesting pharmacological effects, including anti-tumor, anti-inflammatory, and anxiolytic activities. It might be a promising lead drug because of its pharmacological activities and mild toxicity. However, little information is available on the metabolism of koumine. METHODS: A rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight (HPLC/QqTOF) mass spectrometry method was applied to characterize koumine metabolites. Multiple scans of koumine metabolites, which were formed in rat liver S9, were automatically performed simultaneously through auto MS/MS mode acquisition in only a 30-min analysis. The structural elucidation of these metabolites was performed by comparing their changes in accurate molecular masses and product ions with those of the parent drug or metabolites. RESULTS: As a result, a total of eleven metabolites of koumine were identified, of which nine new metabolites were found. The present results showed that the N-demethylenation, hydrogenation and the oxidation were the three main metabolic pathways of koumine. CONCLUSIONS: This was the first investigation of in vitro metabolism of koumine in rat liver S9 using a sensitive and specific HPLC/QqTOF-MS method. The possible metabolic pathways of koumine were tentatively proposed based on the structural elucidations of these metabolites. This work may be useful in the in vivo metabolism of koumine in animals and humans. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Alcaloides Indólicos , Espectrometria de Massas/métodos , Animais , Alcaloides Indólicos/análise , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Fígado/química , Fígado/metabolismo , Modelos Moleculares , Ratos
18.
Rapid Commun Mass Spectrom ; 30(13): 1549-59, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27321842

RESUMO

RATIONALE: Allocryptopine (AL) and protopine (PR) have been extensively studied because of their anti-parasitic, anti-arrhythmic, anti-thrombotic, anti-inflammatory and anti-bacterial activity. However, limited information on the pharmacokinetics and metabolism of AL and PR has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of AL and PR in rat liver S9 using a rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOFMS) method. METHODS: The incubation mixture was processed with 15% trichloroacetic acid (TCA). Multiple scans of AL and PR metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the precursor ion or metabolite. RESULTS: Eight and five metabolites of AL and PR were identified in rat liver S9, respectively. Among these metabolites, seven and two metabolites of AL and PR were identified in the first time, respectively. The demethylenation of the 2,3-methylenedioxy, the demethylation of the 9,10-vicinal methoxyl group and the 2,3-methylenedioxy group were the main metabolic pathways of AL and PR in liver S9, respectively. In addition, the cleavage of the methylenedioxy group of the drugs and subsequent methylation or O-demethylation were also the common metabolic pathways of drugs in liver S9. In addition, the hydroxylation reaction was also the metabolic pathway of AL. CONCLUSIONS: This was the first investigation of in vitro metabolism of AL and PR in rat liver S9. The detailed structural elucidations of AL and PR metabolites were performed using a rapid and accurate HPLC/QqTOFMS method. The metabolic pathways of AL and PR in rat were tentatively proposed based on these characterized metabolites and early reports. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Benzofenantridinas/análise , Alcaloides de Berberina/análise , Cromatografia Líquida de Alta Pressão , Animais , Fígado , Espectrometria de Massas , Microssomos Hepáticos , Ratos
19.
Int J Mol Sci ; 17(3): 430, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27011173

RESUMO

Medicinal herbal plants have been commonly used for intervention of different diseases and health enhancement worldwide. Koumine, an alkaloid monomer found abundantly in Gelsemium plants, can be effectively used as an anti-inflammatory medication. In this study, the mechanisms associated with the preventative effect of koumine on lipopolysaccharide (LPS)-mediated inflammation in RAW264.7 macrophages were investigated. Koumine induced a decrease in the level of inducible nitric oxide synthase (iNOS) protein, concomitant reduction in the production of nitric oxide (NO) and reduction of the levels of interleukin (IL)-6, tumor necrosis factor-α (TNF-α) and IL-1ß. Furthermore, koumine decreased the phosphorylation of p65 and inhibited nuclear factor κ Bα (IκBα) proteins, resulting in lower production of nuclear factor (NF)-κB transactivation. Koumine also induced a decrease in the phosphorylation of extracellular-signal-regulated kinases (ERK) and p38 in RAW264 cells. In conclusion, these findings reveal that koumine decreases the productions of pro-inflammatory mediators though the suppression of p38 and ERK MAPK phosphorylation and the inhibition of NF-κB activation in RAW264.7 cells.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Alcaloides Indólicos/farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Molecules ; 21(10)2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27706063

RESUMO

Koumine is a kind of alkaloid extracted from Gelsemium elegans (G. elegans). Benth, which has shown promise as an anti-tumor, anxiolytic, and analgesic agent. In our present study, the effect of koumine on lipopolysaccharide (LPS)-mediated RAW 264.7 cell apoptosis was evaluated. MTT assays showed that koumine obviously increased cell viability in LPS-mediated RAW 264.7 macrophages. Preincubation with koumine ameliorated LPS-medicated apoptosis by decreasing reactive oxygen species (ROS) production, which resulted in a significant decrease in the levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS). In addition, koumine-pretreated RAW 264.7 macrophages exhibited reduction of LPS-induced levels of TNF-α, IL-1ß, and IL-6 mRNA. Furthermore, pretreatment with koumine suppressed LPS-mediated p53 activation, loss of mitochondrial membrane potential, caspase-3 activation, decrease of Bcl-2 expression, and elevation of Bax and caspase-3 expressions, suggesting that koumine might act directly on RAW 264.7 cells to inhibit LPS-induced apoptosis. It seems as though the mechanism that koumine possesses is the anti-apoptotic effect mediated by suppressing production of ROS, activation of p53, and mitochondrial apoptotic pathways in RAW 264 cells. Koumine could potentially serve as a protective effect against LPS-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Alcaloides Indólicos/farmacologia , Lipopolissacarídeos/toxicidade , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Monocinas/biossíntese , Óxido Nítrico/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA