Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 77(6): 1676-1684, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35368079

RESUMO

BACKGROUND: During the COVID-19 pandemic, the burden of nosocomial infections caused by MDR pathogens has caused a shortage of polymyxins. Thus, we evaluated the in vitro synergism and antibiofilm activity of antimicrobial combinations and propose a test kit for synergism against carbapenem-resistant Acinetobacter baumannii (CRAB). METHODS: Fifty-six CRAB isolates were tested for synergy between meropenem, gentamicin and ampicillin/sulbactam. MICs were determined by broth microdilution. Synergism was tested using chequerboard analysis, followed by a time-kill curve. Additionally, minimum biofilm eradication concentration was determined and the antibiofilm activity of the combinations was evaluated by MTT assay and biomass reduction. A test kit was developed for routine laboratory testing to detect synergism. RESULTS: All CRAB isolates were resistant to gentamicin and ampicillin/sulbactam. Chequerboard synergism occurred against 75% of the isolates. Meropenem + ampicillin/sulbactam was the most frequent combination with synergism (69%), followed by ampicillin/sulbactam + gentamicin (64%) and meropenem + gentamicin (51%). All combinations presented only bacteriostatic activity and no bactericidal or antibiofilm effects. The routine laboratory test showed 100% accuracy compared with other in vitro assays. CONCLUSIONS: Our study demonstrates the potential role of antibiotic combinations against planktonic bacteria. In vitro synergism is possible and can be an alternative treatment for patients with CRAB infection during a polymyxin shortage.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , COVID-19 , Infecções por Acinetobacter/microbiologia , Ampicilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Gentamicinas/farmacologia , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Pandemias , Polimixinas , Sulbactam/farmacologia
2.
J Orthop Sci ; 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36526520

RESUMO

BACKGROUND: This study aimed to evaluate different concentrations of vancomycin and/or gentamicin loaded polymethylmethacrylate (PMMA) against biofilm formation of Staphylococcus aureus. METHODS: Biofilm production of S. aureus in PMMA loaded with different concentrations of vancomycin and gentamicin were evaluated by quantitative analysis of biofilm cells, scanning electronic microscopy, viability assay, Fourier transform infrared spectroscopy, and checkerboard. Statistical analysis was performed by Mann Whitney test. The difference in colony forming units per mL was significant when p < 0.05. RESULTS: All loaded PMMA presented a reduction in the number of colony forming units per mL (p < 0.05). The gentamicin-loaded PMMA could inhibits the grown of sessile cells (p < 0.05), where the group vancomycin 4 g + gentamicin 500 mg presented a better result. The Fourier transform infrared spectra showed no significant differences, and checkerboard of vancomycin and gentamicin showed synergism. CONCLUSION: Effects against adherence and bacterial development in PMMA loaded with antibiotics were mainly seen in the group vancomycin 4 g + gentamicin 500 mg, and synergic effect can be applied in antibiotic-loaded cement.

3.
Cell Tissue Bank ; 23(3): 511-520, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34767141

RESUMO

BACKGROUND: We hypothesize that adding sonication cycles to the process of decellularization of cadaveric human peripheral nerves will increase the removal of cell debris and myelin sheath, increasing their utility as allografts. METHODS: Our aim of this study was to develop a decellularization protocol that allows the removal of cells and myelin sheath without detrimental effects on nerve architecture. Segments of ulnar and median nerves from human donors, isolated both before and after cardiac arrest, were subjected to two methods of decellularization: two-detergent-based (M1) and the same method with sonication added (M2). We evaluated the histology of unprocessed and decellularized nerves (n = 24 per group) for general morphology, presence of cell nuclei, nuclear remnants, collagen fibers, and myelin. We performed immunohistochemistry to verify the removal of Schwann cells associated with histomorphometry. We used scanning electron microscopy (EM) to evaluate the ultrastructure of both native and decellularized nerves. The efficacy of decellularization was assessed by analysis of genomic DNA. RESULTS: Histology confirmed that both decellularization protocols were adequate and maintained natural nerve architecture. Scanning EM showed that 3D ultrastructural architecture also was maintained. Histomorphometric parameters showed a more complete removal of the myelin with the M2 protocol than with M1 (p = 0.009). Fiber diameter and density were not modified by decellularization methods. CONCLUSIONS: Sonication can be a complementary method to decellularization of peripheral nerve allografts with sonication increasing the effectiveness of detergent-based protocols for the removal of unwanted cellular components from peripheral nerve allografts.


Assuntos
Detergentes , Nervos Periféricos , Aloenxertos/transplante , Detergentes/análise , Matriz Extracelular/química , Humanos , Nervos Periféricos/fisiologia , Nervos Periféricos/transplante , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Transplante Homólogo/métodos
4.
Cell Tissue Bank ; 23(3): 531-540, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35067845

RESUMO

The decellularization of bovine bone has emerged as a strategy for the repair, replacement, and regeneration of bone defects. To evaluate the effects of a new protocol of bone decellularization and its impact on the structure and collagen scaffold. Cancellous bone from bovine femur was dissected in fragments and decellularized based on protocol of multiple steps. The residual protein levels, histological, morphometric, and scanning electronic microscopy analyses were carried out to evaluate the effects of decellularization and the impact on the structure and collagen scaffold. A cytotoxicity assay was performed. Residual protein analysis showed an important removal of bone marrow components and cell debris from the bone. Sections revealed that collagen fibers presented integrity and absence of cells in the decellularized bone. Sirius Red-stained sections of collagen fiber collagen matrix were maintained after decellularization. Scanning electron microscopy revealed that the main bone structure, despite being irregular, was maintained in both groups, with no significant visual differences between the surface characteristics according to the groups. Decellularized bovine bone demonstrated a degree of toxicity of 3, indicating moderate reactivity. The present data demonstrate that the main bone structure was maintained. Additionally, the chemical and physical treatments were able to remove cellular debris, and extracellular matrix architecture and collagen were preserved. However, the tissue showed moderate toxicity.


Assuntos
Colágeno , Engenharia Tecidual , Animais , Bovinos , Colágeno/análise , Matriz Extracelular/metabolismo , Preservação Biológica , Engenharia Tecidual/métodos , Alicerces Teciduais
5.
Eur J Orthop Surg Traumatol ; 32(5): 981-989, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34236512

RESUMO

BACKGROUND: Titanium and polyether-ether-ketone (PEEK) interbody cages are commonly used for spine fusion. Few data are known about bacterial and yeast biofilms formation in these implants. The aim of this study was to compare Staphylococcus aureus and Candida albicans biofilm formation in the surface of two different interbody devices used routinely in spine surgery. METHODS: Six bodies of proof specimens of PEEK and titanium alloy were used for microbiological tests, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Experimental biofilm was produced with Staphylococcus aureus and Candida albicans, followed by quantitative analysis of planktonic cells and sessile cells. The comparison between the medians of biofilm quantification between the two models was performed using the Mann-Whitney test and considered the statistical difference for a p < 0.05. RESULTS: In the S. aureus model, in both planktonic and sessile cell counts, titanium-alloy samples showed lower values for colony forming units per milliliter (UFC/mL) (p < 0.05). The evaluation through the optic density of planktonic and sessile cells showed lower values in the titanium-alloy samples, however, only statistically significant in planktonic cell count (p < 0.05). The count of planktonic yeast cells in PEEK was similar to titanium-alloy samples, while the count of sessile yeast cells in titanium alloy was lower when compared to PEEK (p < 0.05). CONCLUSION: Titanium-alloy models were associated with less staphylococcal and Candida biofilm formation when compared with PEEK.


Assuntos
Infecções Estafilocócicas , Titânio , Ligas , Benzofenonas , Biofilmes , Candida albicans , Humanos , Cetonas , Polietilenoglicóis/farmacologia , Polímeros , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
6.
Cell Tissue Bank ; 22(4): 643-649, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34091815

RESUMO

Musculoskeletal allografts are used in reconstructive procedures, however, the risk of contamination with potential pathogens is possible, and safe transplantation requires multiple processing considerations. Hydrogen peroxide (H2O2) has commonly been used in bone washing because it can remove donor cells and eliminate antigens, pathogens, or cytotoxic agents from the matrix. The aim of this study was to evaluate the quantitative activity of H2O2 in a model of bone contamination with a high bacterial load to define the bioburden reduction. Twelve bone disc models were artificially contaminated with Staphylococcus aureus. The bones were treated with a washing process composed by antibiotics, 30% hydrogen peroxide, and 70% alcohol. Tryptic Soy Agar plates were directly inoculated with 100µL of each step of the washing process and colonies were counted in CFU/mL. Scanning electron microscopy was used for bone structural analysis before and after the washing process. After antibiotics, there was a drop of less than 1 log for cancellous bone and almost 1 log for cortical bone. However, after H2O2, there as a drop of 3 logs for cortical (p = 0.007), and 2 logs for cancellous bone (p = 0.063). The use of alcohol did not change the bioburden following H2O2 in cancellous and cortical bone. Despite the important drop of bacterial load, H2O2 was not enough to completely eradicate bacterial with this model of bioburden. H2O2 is useful in decontamination, but antibiotics have little activity, and alcohol is useless. The process is useful in decontamination up to 3 logs of bioburden.


Assuntos
Desinfecção , Peróxido de Hidrogênio , Aloenxertos , Humanos , Peróxido de Hidrogênio/farmacologia , Bancos de Tecidos , Transplante Homólogo
7.
Eur J Orthop Surg Traumatol ; 31(6): 1113-1120, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33394140

RESUMO

BACKGROUND: The gold standard for microbial detection in prosthetic joint infections is the multiple culture of the peri-prosthetic tissue. The fluid cultures after sonication can improve the recovery of the microorganisms. OBJECTIVE: The aim of this study was to evaluate the sonication technique with a plastic bag and the effect of refrigeration on microorganism detection with conventional culturing, MALDI-TOF MS and qPCR assay on an orthopedic screw model. METHODS: We produced biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans on orthopedic screws, which were stored under different conditions and temperatures before sonication. After sonication, the mass spectrometry by MALDI-TOF, qPCR and culture protocols was performed using the sonicated fluid, for detecting the microorganisms involved in the biofilm. RESULTS: The bacterial bioburden decreased by approximately one log after the refrigeration period, in the screws containing P. aeruginosa and S. aureus biofilms. All the microorganisms involved in the screw biofilms were detected with MALDI-TOF and qPCR. Significant reductions in CFU counts occurred only in groups stored in the plastic bag, indicating that changes in temperature and humidity may favor cell death. However, this variation is not important for this model as it did not affect the detection owing to the high counts obtained. CONCLUSION: Microbial identification by MALDI-TOF in sonicated fluid is feasible. With qPCR, there were no differences between the detection in the screws processed immediately or after refrigeration. It is necessary to consider whether or not the refrigeration period would affect microbial recovery in an explanted prosthesis.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Biofilmes , Humanos , Infecções Relacionadas à Prótese/diagnóstico , Sonicação , Staphylococcus aureus
8.
Cell Tissue Bank ; 21(4): 573-584, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32809090

RESUMO

Residual chemicals that are presented during tissue processing in human tissue banks can be a risk for the allograft recipient. Determine the residual concentrations of the antibiotics and detergent used in the process of human decellularized tissue-engineered heart valves stored in isotonic saline solution up to 18 months. A total of 24 human decellularized allografts were stored in sterile sodium chloride and analyzed immediately after the decellularization process (0 months) and after storage for 6, 12, and 18 months, which includes the use of sodium dodecyl sulfate (SDS) and antibiotics (cefoxitin, vancomycin hydrochloride, lincomycin hydrochloride, polymyxin B sulfate). These valves were used for suitability tests, the zone of inhibition evaluation, and direct contact cytotoxicity assay. The stock solution from 32 valves was used for LC-MS/MS analysis of antibiotics and SDS. Tissue samples from decellularized valves showed a zone of inhibition formation for S. aureus and B. subtilis, suggesting the presence of an inhibitory molecule in the tissue. Cytotoxicity tests were negative. Polymyxin B, vancomycin, and SDS were detected and quantified in human decellularized aortic and pulmonary allografts during all periods of the study. There were no traces of residual cefoxitin and lincomycin in the tissue stock solution. We found residual concentrations of the antibiotics and detergent used in the process of human decellularized tissue-engineered heart valves stored in isotonic saline solution up to 18 months.


Assuntos
Antibacterianos/análise , Detergentes/análise , Valvas Cardíacas/fisiologia , Espectrometria de Massas em Tandem , Engenharia Tecidual , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Cromatografia Líquida , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana
9.
Xenotransplantation ; 26(2): e12464, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30264494

RESUMO

Pericardial membrane derived from bovine heart tissues is a promising source of material for use in tissue-engineering applications. However, tissue processing is required for its use in humans due to the presence of animal antigens. Therefore, the purpose of this study was to evaluate the structural integrity and biocompatibility of the bovine pericardium (BP) after a soft decellularization process with a 0.1% sodium dodecyl sulfate (SDS) solution, with the aim to remove xenoantigens and preserve extracellular matrix (ECM) bioactivity. The decellularization process promoted a mean reduction of 77% of the amount of DNA in the samples in which cell nuclei staining was undetectable. The ECM content was maintained as mostly preserved after decellularization as well as its biomechanical properties. In addition, the decellularization protocol has proven to be efficient in removing the xenoantigen alpha-gal, which is responsible for immune rejection. The decellularized BP was noncytotoxic in vitro and allowed human adipose-derived stem cell (hASC) adhesion. Finally, after 7 days in culture, the tissue scaffold became repopulated by hASCs, and after 30 days, the ECM protein pro-collagen I was seen in the scaffold. Together, these characteristics indicated that soft BP decellularization with 0.1% SDS solution allows the acquirement of a bioactive scaffold suitable for cell repopulation and potentially useful for regenerative medicine.


Assuntos
Matriz Extracelular/imunologia , Pericárdio/imunologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Bovinos , Matriz Extracelular/metabolismo , Humanos , Dodecilsulfato de Sódio/metabolismo , Engenharia Tecidual/métodos , Transplante Heterólogo/métodos
10.
Cell Tissue Bank ; 20(1): 87-94, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30729370

RESUMO

The contamination of the transport solution used in cardiovascular allografts can occur from different sources. Risk factors associated with positive microbiological test of transport solution have not been reported previously. This study aimed to determine the risk factor for contamination of transport solution used in the heart valve allografts stored in a Brazilian tissue bank. This retrospective study was conducted on all donors of cardiovascular allografts stored in a tissue bank from December 2008 to December 2017. Microbiological cultures for aerobic and anaerobic bacteria, fungi/yeasts were carried out in TS. Clinical variables were included. From 1001 transport solution, 52% were contaminated. A total of 770 microorganisms were identified, and Staphylococcus spp. was identified in 248 isolates (32.2%). Skin bacteria from skin microbiota were the most commonly identified microorganisms (Staphylococcus spp., Cutibacterium spp., Corynebacterium spp., and Bacillus spp.), occurring in 49.6%. The presence of a diagnosis of healthcare-associated infection was not associated with skin contamination (odds ratio [OR] 0.62 [0.41-0.94]; p = 0.014). Conditions like fever, use of antibiotics, and leukocytosis were less likely associated with contamination of transport solution. A longer warm ischemic time was associated with higher frequency of contamination. In the multivariable analysis, warm ischemic time was independently associated with contamination, and antibiotic therapy was a factor that decreased the rate of contamination (p < 0.05). Contamination of transport solution is associated with modifiable risk factors, such as warm ischemic time. Measures to minimize contamination should be employed to avoid unnecessary tissue discharges.


Assuntos
Aloenxertos/microbiologia , Valvas Cardíacas/fisiologia , Bancos de Tecidos , Adulto , Bactérias/isolamento & purificação , Feminino , Humanos , Masculino , Fatores de Risco , Soluções , Meios de Transporte
11.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875722

RESUMO

Extracellular vesicles (EVs) are particles released from different cell types and represent key components of paracrine secretion. Accumulating evidence supports the beneficial effects of EVs for tissue regeneration. In this study, discarded human heart tissues were used to isolate human heart-derived extracellular vesicles (hH-EVs). We used nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) to physically characterize hH-EVs and mass spectrometry (MS) to profile the protein content in these particles. The MS analysis identified a total of 1248 proteins. Gene ontology (GO) enrichment analysis in hH-EVs revealed the proteins involved in processes, such as the regulation of cell death and response to wounding. The potential of hH-EVs to induce proliferation, adhesion, angiogenesis and wound healing was investigated in vitro. Our findings demonstrate that hH-EVs have the potential to induce proliferation and angiogenesis in endothelial cells, improve wound healing and reduce mesenchymal stem-cell adhesion. Last, we showed that hH-EVs were able to significantly promote mesenchymal stem-cell recellularization of decellularized porcine heart valve leaflets. Altogether our data confirmed that hH-EVs modulate cellular processes, shedding light on the potential of these particles for tissue regeneration and for scaffold recellularization.


Assuntos
Vesículas Extracelulares/metabolismo , Valvas Cardíacas/química , Células-Tronco Mesenquimais/citologia , Proteínas/metabolismo , Proteômica/métodos , Animais , Brasil , Adesão Celular , Proliferação de Células , Células Cultivadas , Ontologia Genética , Valvas Cardíacas/metabolismo , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Nanotecnologia , Neovascularização Fisiológica , Suínos , Bancos de Tecidos
12.
Cell Tissue Bank ; 19(3): 447-454, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29556882

RESUMO

All cardiac allograft tissues are under potential contamination, requiring a validated terminal sterilization process or a minimal bioburden. The bioburden calculation is important to determine the bacterial burden and further decontamination and disinfection strategies for the valve processing. The aim of this study was to determine the bioburden from transport solution (TS) of heart valves obtained from non-heart-beating and heart-beating donors in different culture methods. The bioburden from TS was determined in 20 hearts donated for valve allograft tissue using membrane filter (MF) and direct inoculation. Tryptic soy agar and Sabouraud plates were incubated and colonies were counted. Ninety-five percent of samples from this study were obtained from heart-beating donors. The warm ischemic time period for heart was 1.06 ± 0.74 h and the cold ischemic time period was 25.66 ± 11.16 h. The mean TS volume was 232.68 ± 96.67 mL (48.5-550 mL). From 20 samples directly inoculated on TSA agar plates, 2 (10%) were positive. However, when MF was used, from 20 samples in TSA, 13 (65%) were positive with a mean count of 1.36 ± 4.04 CFU/mL. In Sabouraud plates, the direct inoculation was positive in 5 samples (25%) with a mean count of 0.24 ± 0.56 CFU/mL. The use of MF increased the positivity to 50% (10 samples from a total of 20) with a mean of 0.28 ± 0.68 CFU/mL. The positivity was superior using MF in comparison with direct inoculation (p < 0.05). The bioburden of TS is low and MF is the technique of choice due to higher positivity.


Assuntos
Aloenxertos/microbiologia , Bactérias/isolamento & purificação , Valvas Cardíacas/microbiologia , Coleta de Tecidos e Órgãos/métodos , Adulto , Criança , Pré-Escolar , Contagem de Colônia Microbiana , Feminino , Valvas Cardíacas/transplante , Humanos , Masculino , Pessoa de Meia-Idade , Bancos de Tecidos , Doadores de Tecidos , Transplante Homólogo , Adulto Jovem
13.
Cell Tissue Bank ; 19(4): 499-505, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29687168

RESUMO

Most tissue banks use the conventional method; however, the automated method has advantages over the conventional method. The aim of this study was to compare the conventional and automated methods of culture in human cardiac tissue using an artificial contamination model. Myocardial samples were contaminated with sequential concentration (104 to 10-1 CFU/mL) with Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Candida albicans. Cultures were obtained from solution were the fragment was immersed and minced tissue, before and after the routine decellularization solution, with automated and conventional culture methods. Automated and conventional methods were compared and a p value ≤ 0.05 was considered significant. Staphylococcus aureus presented a significantly higher growth in the automated method, as well as faster than the conventional (p < 0.05). The positivity for growth in the automated method was higher in concentrated inoculum (> 102 CFU/mL) (p < 0.05). The growth in the automated method was significantly faster than conventional when inoculum concentration was above 103 CFU/mL. The automated culture method is faster than conventional method with a higher positivity in a contaminated model of myocardial and transport solution used in tissue banks.


Assuntos
Valvas Cardíacas/microbiologia , Bancos de Tecidos , Obtenção de Tecidos e Órgãos , Automação , Humanos , Fatores de Tempo
15.
FEMS Microbiol Lett ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821516

RESUMO

INTRODUCTION: This study aimed to analyze ESBL-producing Escherichia coli prevalence in urine samples collected between 2011-2019 in Curitiba, a large city in Brazil, and relating it to antibiotic consumption and sanitary conditions. METHODS: This is a longitudinal study correlating prevalence of ESBL-producing E. coli isolates from urine samples with district-level antibiotic consumption and sociodemographic data during 2011-2019. E. coli isolates were tested for antibiotic susceptibility and ESBL by an automated method. Statistical analysis applied linear regressions, pooled ordinary least squares, and fixed effects models for districts or years. The Chow and Hausman tests indicated that the fixed effects model for individual districts fitted best. Chi-square test was used for qualitative variables (statistical significance was set when p<0.05). RESULTS: Among the 886,535 urine sample cultures, 9.9% of isolates were ESBL-producing E. coli. Their prevalence increased from 4.7% in 2011 to 19.3% in 2019 (p<0.0001; R2=0.922). This progressive increase correlated with age (p=0.007; R2=0.8725) and male gender (p<0.001) and increased antibiotic consumption (p=0.0386; R2=0.47). The fixed effects model showed that district influences ESBL prevalence and that antibiotic consumption explains 20-30% of this variation, with an increase of one defined daily dose accounting for an increase of 0.02084 percentage points of ESBL. CONCLUSIONS: The increasing prevalence of ESBL-producing E. coli can, to a considerable extent, be explained by increasing antibiotic consumption.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38324871

RESUMO

Extended-spectrum beta-lactamase producing and ciprofloxacin-non-susceptible Escherichia coli are clinical and environmental issues. We evaluated the susceptibility profile of fosfomycin in non-susceptible E. coli isolated from urine and the environment. We measured the activity of fosfomycin against 319 and 36 E. coli strains from urine and environmental isolates, respectively, collected from rivers. Fosfomycin resistance profiles were investigated using the minimal inhibitory concentration (MIC), according to the Clinical and Laboratory Standards Institute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST) guidelines. Antibiotic susceptibility testing revealed that 5% and 6.6% of urine samples were non-susceptible to fosfomycin according to CLSI and EUCAST guidelines, respectively. The fosfomycin MIC50/90 was 0.5/4 mg/L. Of the 36 E. coli isolates from river water, 11.1% and 13,8% were non-susceptible to fosfomycin according to CLSI and EUCAST, respectively (range ≤0.25 ≥512 mg/L). All the isolates with MIC ≥512 mg/L for fosfomycin showed the fosA3 gene. Fosfomycin resistance was more frequent in the environment than in clinical samples.


Assuntos
Infecções por Escherichia coli , Fosfomicina , Humanos , Fosfomicina/farmacologia , Ciprofloxacina/farmacologia , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
17.
Enferm Infecc Microbiol Clin (Engl Ed) ; 41(10): 596-603, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36707288

RESUMO

INTRODUCTION: Biofilm formation causes virulence and resistance in Candida albicans. However, little is known about breakthrough candidemia isolates. We evaluated the antifungal activity of fluconazole, anidulafungin, deoxycholate amphotericin B (dAMB), and amphotericin B lipid complex (ABLC) against biofilms of C. albicans isolated from patients with breakthrough candidemia. METHODS: The present study used strains of C. albicans isolated from breakthrough and non-breakthrough candidemia patients (control group). The susceptibility of planktonic cells to amphotericin B, anidulafungin, and fluconazole was determined by broth microdilution. Antifungal activity in sessile cells was evaluated using the minimum biofilm eradication concentration (MBEC), metabolic activity was estimated by reducing MTT, and biomass was estimated using crystal violet retention. RESULTS: The planktonic strains were susceptible to amphotericin B, anidulafungin, and fluconazole, with minimum inhibitory concentrations of 1, ≤0.03, and 2mg/L, respectively. However, fluconazole and anidulafungin did not exert an antifungal effect on biofilms. Additionally, dAMB and ABCL reduced the metabolic activity and biomass. However, eradication was only achieved using 16mg/L dAMB. C. albicans isolates of breakthrough candidemia exhibited strong biofilm production, and the in vitro activity of available therapeutic options was poor. CONCLUSION: In the present study, only dAMB and ABCL exhibited antibiofilm effects against sessile breakthrough candidemia isolates.


Assuntos
Anfotericina B , Candidemia , Humanos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anidulafungina/farmacologia , Anidulafungina/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida albicans , Candidemia/tratamento farmacológico , Candida , Biofilmes , Ácido Desoxicólico/farmacologia , Ácido Desoxicólico/uso terapêutico
18.
Antibiotics (Basel) ; 12(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671287

RESUMO

Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.

19.
J Bras Nefrol ; 45(3): 373-377, 2023.
Artigo em Inglês, Português | MEDLINE | ID: mdl-37158483

RESUMO

INTRODUCTION: Urinary catheter-related infection is commonly associated with bacterial biofilm. The impact of anaerobes is unknown, but their detection in the biofilm on this device has not been previously reported. This study aimed to evaluate the capability to recovery strict, facultative, and aerobic microorganisms in patients using bladder catheters from ICUs using conventional culture, sonication, urinary analysis, and mass spectrometry. METHODS: Parallel, sonicated bladder catheters from 29 critically ill patients were compared with their routine urine culture. Identification was performed using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. RESULTS: The positivity rate in urine (n = 2, 3.4%) was lower than that in sonicated catheters (n = 7, 13.8%). CONCLUSION: Bladder catheter sonication showed more positive culture results than urine samples for anaerobic and aerobic microorganisms. The role of anaerobes in urinary tract infection and catheter biofilm is discussed.


Assuntos
Infecções Relacionadas a Cateter , Infecções Urinárias , Humanos , Sonicação/métodos , Bexiga Urinária , Catéteres , Biofilmes , Infecções Relacionadas a Cateter/microbiologia , Infecções Urinárias/microbiologia , Cateteres de Demora
20.
Injury ; 54 Suppl 6: 110649, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38143147

RESUMO

INTRODUCTION: Bone cement containing vancomycin or gentamicin is a therapeutic strategy for combating orthopedic infections: however, the activity of these antibiotics is narrow. Silver nanoparticles (AgNPs) are nanocomponents with a wide spectrum, including multidrug-resistant bacteria. In the present study, we aimed to evaluate the effect of AgNP-loaded polymethylmethacrylate (PMMA) on biofilm formation by Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis. METHODS: The effect of AgNP-loaded PMMA with and without vancomycin or gentamicin on biofilm production was quantitatively analyzed. S. aureus, E. coli, P. aeruginosa, and S. epidermidis were included as biofilm-producing microorganisms in the in vitro model. RESULTS: AgNP-loaded PMMA with antibiotics reduced the number of colony-forming units (CFUs; p<0.001). However, AgNP-loaded PMMA alone did not significantly reduce biofilm formation. CONCLUSION: Our study demonstrated the potential of AgNP-loaded PMMA. Notably, we observed that AgNP-loaded PMMA containing vancomycin or gentamycin exhibited significantly superior efficacy, with satisfactory activity against most biofilm-forming microbial agents examined.


Assuntos
Nanopartículas Metálicas , Vancomicina , Humanos , Vancomicina/farmacologia , Polimetil Metacrilato/farmacologia , Gentamicinas/farmacologia , Prata/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cimentos Ósseos/farmacologia , Biofilmes , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA