Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 98(2): 489-499, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864943

RESUMO

Pollination syndromes are suites of floral traits presumed to reflect adaptations to attract and utilize a "primary" type of animal pollinator. However, syndrome traits may also function to deter "secondary" flower visitors that reduce plant fitness through their foraging activities. Here we use the hummingbird-pollinated plant species Mimulus cardinalis as a model to investigate the potential deterrent effects of classic bird syndrome traits on bumble bee foragers. To establish that M. cardinalis flowers elicit an avoidance response in bees, we assessed the choice behavior of individual foragers on a mixed experimental array of M. cardinalis and its bee-pollinated sister species M. lewisii. As expected, bees showed a strong preference against M. cardinalis flowers (only 22% of total bee visits were to M. cardinalis), but surprisingly also showed a high degree of individual specialization (95.2% of total plant transitions were between conspecifics). To determine M. cardinalis floral traits that discourage bee visitation, we then assessed foraging responses of individuals to M. cardinalis-like and M. lewisii-like floral models differing in color, orientation, reward, and combinations thereof. Across experiments, M. cardinalis-like trait combinations consistently produced a higher degree of flower avoidance behavior and individual specialization than expected based on bee responses to each trait in isolation. We then conducted a series of flower discrimination experiments to assess the ability of bees to utilize traits and trait combinations associated with each species. Relative to M. lewisii-like alternatives, M. cardinalis-like traits alone had a minimal effect on bee foraging proficiency but together increased the time bees spent searching for rewarding flowers from 1.49 to 2.65 s per visit. Collectively, our results show that M. cardinalis flowers impose foraging costs on bumble bees sufficient to discourage visitation and remarkably, generate such costs through synergistic color-orientation and color-reward trait interactions. Floral syndromes therefore represent complex adaptations to multiple pollinator groups, rather than simply the primary pollinator.


Assuntos
Abelhas/fisiologia , Aves/fisiologia , Flores/anatomia & histologia , Fenótipo , Polinização , Animais , Flores/genética , Plantas
2.
Environ Entomol ; 49(2): 277-287, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31961920

RESUMO

Drosophilid species with different life histories have been shown to exhibit similar behavioral patterns related to locating and utilizing resources such as hosts, mates, and food sources. Drosophila suzukii (Matsumura) is an invasive species that differs from other frugivorous drosophilids in that females lay eggs in ripe and ripening fruits instead of overripe or rotten fruits. We hypothesized that there may be diurnal and/or seasonal patterns associated with the movement of drosophilid species into and out of crop fields and their attraction to fermentation-odor-based monitoring traps, and that D. suzukii would conform to similar patterns. To test these hypotheses, we deployed passive, 2-headed Malaise traps between crop fields and wooded edges to simultaneously catch flies moving into and out of crop fields. We also deployed monitoring traps with a fermentation-based bait between crop fields and wooded edges and within crop rows. Traps were deployed weekly in June-August in 2014 and 2015 at two commercial blackberry farm in Cleveland County, NC, and were checked hourly for 24 h, except during darkness. Both D. suzukii and other drosophilid species moved between crop fields and wooded edges and were attracted to monitoring traps primarily during the morning and evening hours. Whereas other drosophilids were captured in traps throughout the season, few D. suzukii were caught in traps until early to mid-July in both years and increased as the season progressed. Understanding D. suzukii movement and activity patterns is essential for the development of effective management strategies.


Assuntos
Rubus , Animais , Drosophila , Feminino , Controle de Insetos , North Carolina , Óvulo , Estações do Ano
3.
J Econ Entomol ; 113(5): 2465-2472, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32740653

RESUMO

The western bean cutworm (WBC), Striacosta albicosta (Lepidoptera: Noctuidae), can be a severe pest of transgenic corn in the western Plains and Great Lakes regions of North America, including on hybrids expressing the Bacillus thuringiensis (Bt) Cry1F toxin. The level and geographic distribution of Cry1F resistance are not completely known. Neonate S. albicosta from 10 locations between Nebraska and New York state were subjected to dose-response trypsin-activated native Cry1F toxin overlay bioassays. In 2017, the mean estimated lethal concentration causing 50% larval mortality (LC50) ranged from 15.1 to 18.4 µg Cry1F cm-2, and were not significantly different among locations. In 2018, LC50 estimates at Scottsbluff, NE (22.0 µg Cry1F cm-2) and Watertown, NY (21.7 µg Cry1F cm-2) were significantly higher when compared to locations in Michigan (15.8 µg Cry1F cm-2). Significantly lower 14-day larval weight among survivors was correlated with higher Cry1F dose. Results from this study indicate that S. albicosta survivorship on purified Bt Cry1F toxin shows a relatively even distribution across the native and range expansion areas where seasonal field infestations typically occur.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas , Great Lakes Region , Proteínas Hemolisinas/genética , Larva , Michigan , Nebraska , New York , América do Norte , Plantas Geneticamente Modificadas , Estados Unidos , Zea mays/genética
4.
J Econ Entomol ; 110(4): 1648-1652, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541540

RESUMO

Drosophila suzukii (Matsumura) is an invasive species that is a devastating pest of soft-skinned fruit crops. Although much effort has been directed toward developing traps and attractants to monitor for D. suzukii, current monitoring tools do not reliably predict fruit infestation. The objective of this study was to determine if D. suzukii females at different developmental stages are differentially attracted to monitoring traps with fermentation-based baits and ripe fruits. Females were collected on the surface of traps, within traps, and on ripe fruits during three experiments at field locations in North Carolina, USA, and were dissected to determine their reproductive status. In general, females collected on ripe fruits were more likely to have mature eggs present in their ovaries and had higher numbers of mature eggs than females collected on the surface of or within monitoring traps. The results of this study have implications for D. suzukii monitoring and the development of effective baits for use in integrated pest management programs.


Assuntos
Quimiotaxia , Drosophila/fisiologia , Fermentação , Frutas/metabolismo , Feromônios/farmacologia , Rubus/metabolismo , Animais , Feminino , Frutas/crescimento & desenvolvimento , North Carolina , Reprodução , Rubus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA