Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 205(10): 2583-2594, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33067378

RESUMO

Protective MHC class I-dependent immune responses require an overlap between repertoires of proteins directly presented on target cells and cross-presented by professional APC, specifically dendritic cells. How stable proteins that rely on defective ribosomal proteins for direct presentation are captured for cell-to-cell transfer remains enigmatic. In this study, we address this issue using a combination of in vitro (C57BL/6-derived mouse cell lines) and in vivo (C57BL/6 mouse strains) approaches involving stable and unstable versions of OVA model Ags displaying defective ribosomal protein-dependent and -independent Ag presentation, respectively. Apoptosis, but not necrosis, of donor cells was found associated with robust global protein aggregate formation and captured stable proteins permissive for cross-presentation. Potency of aggregates to serve as Ag source was directly demonstrated using polyglutamine-equipped model substrates. Collectively, our data implicate global protein aggregation in apoptotic cells as a mechanism that ensures the overlap between MHC class I epitopes presented directly or cross-presented by APC and demonstrate the unusual ability of dendritic cells to process stable protein aggregates.


Assuntos
Apresentação de Antígeno , Antígenos/imunologia , Células Dendríticas/imunologia , Peptídeos/imunologia , Agregados Proteicos/imunologia , Animais , Antígenos/genética , Linhagem Celular , Células Dendríticas/metabolismo , Epitopos/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Camundongos Transgênicos , Ovalbumina/genética , Ovalbumina/imunologia , Peptídeos/metabolismo
2.
Mol Carcinog ; 59(7): 807-821, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219902

RESUMO

Great strides have been made in cancer immunotherapy including the breakthrough successes of anti-PD-(L)1 checkpoint inhibitors. In Merkel cell carcinoma (MCC), a rare and aggressive skin cancer, PD-(L)1 blockade is highly effective. Yet, ~50% of patients either do not respond to therapy or develop PD-(L)1 refractory disease and, thus, do not experience long-term benefit. For these patients, additional or combination therapies are needed to augment immune responses that target and eliminate cancer cells. Therapeutic vaccines targeting tumor-associated antigens, mutated self-antigens, or immunogenic viral oncoproteins are currently being developed to augment T-cell responses. Approximately 80% of MCC cases in the United States are driven by the ongoing expression of viral T-antigen (T-Ag) oncoproteins from genomically integrated Merkel cell polyomavirus (MCPyV). Since T-Ag elicits specific B- and T-cell immune responses in most persons with virus-positive MCC (VP-MCC), and ongoing T-Ag expression is required to drive VP-MCC cell proliferation, therapeutic vaccination with T-Ag is a rational potential component of immunotherapy. Failure of the endogenous T-cell response to clear VP-MCC (allowing clinically evident tumors to arise) implies that therapeutic vaccination will need to be potent ansd synergize with other mechanisms to enhance T-cell activity against tumor cells. Here, we review the relevant underlying biology of VP-MCC, potentially applicable therapeutic vaccine platforms, and antigen delivery formats. We also describe early successes in the field of therapeutic cancer vaccines and address several clinical scenarios in which VP-MCC patients could potentially benefit from a therapeutic vaccine.


Assuntos
Carcinoma de Célula de Merkel/imunologia , Poliomavírus das Células de Merkel/imunologia , Neoplasias Cutâneas/imunologia , Vacinas/imunologia , Animais , Antígenos Virais de Tumores/imunologia , Carcinoma de Célula de Merkel/terapia , Carcinoma de Célula de Merkel/virologia , Humanos , Imunoterapia/métodos , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/virologia , Linfócitos T/imunologia
3.
Mol Cell ; 48(4): 601-11, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23041283

RESUMO

Poorly structured domains in proteins enhance their susceptibility to proteasomal degradation. To learn whether the presence of such a domain near either end of a protein determines its direction of entry into the proteasome, directional translocation was enforced on several proteasome substrates. Using archaeal PAN-20S complexes, mammalian 26S proteasomes, and cultured cells, we identified proteins that are degraded exclusively from either the C or N terminus and some showing no directional preference. This property results from interactions of the substrate's termini with the regulatory ATPase and could be predicted based on the calculated relative stabilities of the N and C termini. Surprisingly, the direction of entry into the proteasome affected markedly the spectrum of peptides released and consequently influenced the efficiency of MHC class I presentation. Thus, easily unfolded termini are translocated first, and the direction of translocation influences the peptides generated and presented to the immune system.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Desdobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Animais , Calmodulina/química , Calmodulina/imunologia , Calmodulina/metabolismo , Caseínas/química , Caseínas/imunologia , Caseínas/metabolismo , Linhagem Celular Tumoral , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/imunologia , Proteínas Ligantes de Maltose/metabolismo , Camundongos , Ovalbumina/química , Ovalbumina/imunologia , Ovalbumina/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Transporte Proteico , Proteínas/imunologia
4.
Clin Cancer Res ; 30(6): 1189-1199, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37851052

RESUMO

PURPOSE: Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer. Although essentially all MCCs are antigenic through viral antigens or high tumor mutation burden, MCC has a response rate of only approximately 50% to PD-(L)1 blockade suggesting barriers to T-cell responses. Prior studies of MCC immunobiology have focused on CD8 T-cell infiltration and their exhaustion status, while the role of innate immunity, particularly myeloid cells, in MCC remains underexplored. EXPERIMENTAL DESIGN: We utilized single-cell transcriptomics from 9 patients with MCC and multiplex IHC staining of 54 patients' preimmunotherapy tumors, to identify myeloid cells and evaluate association with immunotherapy response. RESULTS: Single-cell transcriptomics identified tumor-associated macrophages (TAM) as the dominant myeloid component within MCC tumors. These TAMs express an immunosuppressive gene signature characteristic of monocytic myeloid-derived suppressor cells and importantly express several targetable immune checkpoint molecules, including PD-L1 and LILRB receptors, that are not present on tumor cells. Analysis of 54 preimmunotherapy tumor samples showed that a subset of TAMs (CD163+, CD14+, S100A8+) selectively infiltrated tumors that had significant CD8 T cells. Indeed, higher TAM prevalence was associated with resistance to PD-1 blockade. While spatial interactions between TAMs and CD8 T cells were not associated with response, myeloid transcriptomic data showed evidence for cytokine signaling and expression of LILRB receptors, suggesting potential immunosuppressive mechanisms. CONCLUSIONS: This study further characterizes TAMs in MCC tumors and provides insights into their possible immunosuppressive mechanism. TAMs may reduce the likelihood of treatment response in MCC by counteracting the benefit of CD8 T-cell infiltration. See related commentary by Silk and Davar, p. 1076.


Assuntos
Carcinoma de Célula de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/metabolismo , Receptor de Morte Celular Programada 1 , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Linfócitos T CD8-Positivos , Células Mieloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA