Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Curr Opin Nephrol Hypertens ; 33(4): 447-455, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415700

RESUMO

PURPOSE OF REVIEW: More than a decade ago, apolipoprotein L1 ( APOL1 ) risk alleles designated G1 and G2, were discovered to be causally associated with markedly increased risk for progressive kidney disease in individuals of recent African ancestry. Gratifying progress has been made during the intervening years, extending to the development and clinical testing of genomically precise small molecule therapy accompanied by emergence of RNA medicine platforms and clinical testing within just over a decade. RECENT FINDINGS: Given the plethora of excellent prior review articles, we will focus on new findings regarding unresolved questions relating mechanism of cell injury with mode of inheritance, regulation and modulation of APOL1 activity, modifiers and triggers for APOL1 kidney risk penetrance, the pleiotropic spectrum of APOL1 related disease beyond the kidney - all within the context of relevance to therapeutic advances. SUMMARY: Notwithstanding remaining controversies and uncertainties, promising genomically precise therapies targeted at APOL1 mRNA using antisense oligonucleotides (ASO), inhibitors of APOL1 expression, and small molecules that specifically bind and inhibit APOL1 cation flux are emerging, many already at the clinical trial stage. These therapies hold great promise for mitigating APOL1 kidney injury and possibly other systemic phenotypes as well. A challenge will be to develop guidelines for appropriate use in susceptible individuals who will derive the greatest benefit.


Assuntos
Apolipoproteína L1 , Predisposição Genética para Doença , Humanos , Apolipoproteína L1/genética , Nefropatias/genética , Nefropatias/terapia , Genética Populacional , Animais , Fenótipo , Fatores de Risco , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/genética
2.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2433-48, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627651

RESUMO

Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 ß-galactosidase capable of hydrolyzing short ß-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Šresolution) and its catalytic mutant E323A (at 2.50 Šresolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/ß domain, and the smallest all-ß domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Šfrom each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Šat the wide opening and ∼5 Šat the small opening and ∼40 Šin length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active sites of the trimer. They are located near the small opening of the cone tunnel, all facing the centre of the cavity. The biological relevance of this trimeric structure is supported by independent results obtained from gel-permeation chromatography. These data and their comparison to the structural data of related GH42 enzymes are used for a more general discussion concerning structure-activity aspects in this GH family.


Assuntos
Proteínas de Bactérias/química , Galactose/química , Geobacillus stearothermophilus/química , Oligossacarídeos/química , Subunidades Proteicas/química , beta-Galactosidase/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismo , Expressão Gênica , Geobacillus stearothermophilus/enzimologia , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nitrofenilgalactosídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-24100561

RESUMO

Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a multi-enzyme system for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. The bacterium uses a number of endo-acting extracellular enzymes that break down the high-molecular-weight polysaccharides into decorated oligosaccharides. These oligosaccharides enter the cell and are further hydrolyzed into sugar monomers by a set of intracellular glycoside hydrolases. One of these intracellular degrading enzymes is GanB, a glycoside hydrolase family 42 ß-galactosidase capable of hydrolyzing short ß-1,4-galactosaccharides to galactose. GanB and related enzymes therefore play an important part in the hemicellulolytic utilization system of many microorganisms which use plant biomass for growth. The interest in the biochemical characterization and structural analysis of these enzymes stems from their potential biotechnological applications. GanB from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory as part of its complete structure-function study. The best crystals obtained for this enzyme belong to the primitive orthorhombic space group P212121, with average crystallographic unit-cell parameters of a=71.84, b=181.35, c=196.57 Å. Full diffraction data sets to 2.45 and 2.50 Šresolution have been collected for both the wild-type enzyme and its E323A nucleophile catalytic mutant, respectively, as measured from flash-cooled crystals at 100 K using synchrotron radiation. These data are currently being used for the full three-dimensional crystal structure determination of GanB.


Assuntos
Geobacillus stearothermophilus/enzimologia , Espaço Intracelular/enzimologia , beta-Galactosidase/química , Cristalização , Cristalografia por Raios X , Proteínas Mutantes/química , Síncrotrons
4.
iScience ; 25(1): 103717, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35072009

RESUMO

Two variants at the APOL1 gene, encoding apolipoprotein L1, account for more than 70% of the increased risk for chronic kidney disease in individuals of African ancestry. While the initiating event for APOL1 risk variant cell injury remains to be clarified, we explored the possibility of blocking APOL1 toxicity at a more upstream level. We demonstrate that deletion of the first six amino acids of exon 4 abrogates APOL1 cytotoxicity by impairing APOL1 translocation to the lumen of ER and splicing of the signal peptide. Likewise, in orthologous systems, APOL1 lethality was partially abrogated in yeast strains and flies with reduced dosage of genes encoding ER translocon proteins. An inhibitor of ER to Golgi trafficking reduced lethality as well. We suggest that targeting the MSALFL sequence or exon 4 skipping may serve as potential therapeutic approaches to mitigate the risk of CKD caused by APOL1 renal risk variants.

5.
J Bacteriol ; 193(11): 2838-50, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21460081

RESUMO

Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that has a 38-kb gene cluster for the utilization of arabinan, a branched polysaccharide that is part of the plant cell wall. The bacterium encodes a unique three-component regulatory system (araPST) that includes a sugar-binding lipoprotein (AraP), a histidine sensor kinase (AraS), and a response regulator (AraT) and lies adjacent to an ATP-binding cassette (ABC) arabinose transport system (araEGH). The lipoprotein (AraP) specifically bound arabinose, and gel mobility shift experiments showed that the response regulator, AraT, binds to a 139-bp fragment corresponding to the araE promoter region. Taken together, the results showed that the araPST system appeared to sense extracellular arabinose and to activate a specific ABC transporter for arabinose (AraEGH). The promoter regions of the arabinan utilization genes contain a 14-bp inverted repeat motif resembling an operator site for the arabinose repressor, AraR. AraR was found to bind specifically to these sequences, and binding was efficiently prevented in the presence of arabinose, suggesting that arabinose is the molecular inducer of the arabinan utilization system. The expression of the arabinan utilization genes was reduced in the presence of glucose, indicating that regulation is also mediated via a catabolic repression mechanism. The cluster also encodes a second putative ABC sugar transporter (AbnEFJ) whose sugar-binding lipoprotein (AbnE) was shown to interact specifically with linear and branched arabino-oligosaccharides. The final degradation of the arabino-oligosaccharides is likely carried out by intracellular enzymes, including two α-l-arabinofuranosidases (AbfA and AbfB), a ß-l-arabinopyranosidase (Abp), and an arabinanase (AbnB), all of which are encoded in the 38-kb cluster.


Assuntos
Geobacillus stearothermophilus/metabolismo , Redes e Vias Metabólicas/genética , Família Multigênica , Polissacarídeos/metabolismo , Arabinose/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Geobacillus stearothermophilus/genética , Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sequência de DNA
6.
Biomolecules ; 11(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34439861

RESUMO

BceF is a bacterial tyrosine kinase (BY-kinase) from Burkholderia cepacia, a Gram-negative bacterium accountable for respiratory infections in immunocompromised and cystic fibrosis patients. BceF is involved in the production of exopolysaccharides secreted to the biofilm matrix and promotes resistant and aggressive infections. BY-kinases share no homology with mammalian kinases, and thereby offer a means to develop novel and specific antivirulence drugs. Here, we report the crystal structure of the BceF kinase domain at 1.85 Å resolution. The isolated BceF kinase domain is assembled as a dimer in solution and crystallized as a dimer in the asymmetric unit with endogenous adenosine-diphosphate bound at the active sites. The low enzymatic efficiency measured in solution may be explained by the partial obstruction of the active sites at the crystallographic dimer interface. This study provides insights into self-assembly and the specific activity of isolated catalytic domains. Several unique variations around the active site compared to other BY-kinases may allow for structure-based design of specific inhibitors to target Burkholderia cepacia virulence.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Burkholderia cepacia/fisiologia , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/fisiologia , Cristalografia por Raios X/métodos , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Virulência/fisiologia
7.
Biochem J ; 422(1): 73-82, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19505290

RESUMO

Arabinanases are glycosidases that hydrolyse alpha-(1-->5)- arabinofuranosidic linkages found in the backbone of the pectic polysaccharide arabinan. Here we describe the biochemical characterization and the enzyme-substrate crystal structure of an inverting family 43 arabinanase from Geobacillus stearothermophilus T-6 (AbnB). Based on viscosity and reducing power measurements, and based on product analysis for the hydrolysis of linear arabinan by AbnB, the enzyme works in an endo mode of action. Isothermal titration calorimetry studies of a catalytic mutant with various arabino-oligosaccharides suggested that the enzyme active site can accommodate at least five arabinose units. The crystal structure of AbnB was determined at 1.06 A (1 A=0.1 nm) resolution, revealing a single five-bladed-beta-propeller fold domain. Co-crystallization of catalytic mutants of the enzyme with different substrates allowed us to obtain complex structures of AbnBE201A with arabinotriose and AbnBD147A with arabinobiose. Based on the crystal structures of AbnB together with its substrates, the position of the three catalytic carboxylates: Asp27, the general base; Glu201, the general acid; and Asp147, the pKa modulator, is in agreement with their putative catalytic roles. In the complex structure of AbnBE201A with arabinotriose, a single water molecule is located 2.8 A from Asp27 and 3.7 A from the anomeric carbon. The position of this water molecule is kept via hydrogen bonding with a conserved tyrosine (Tyr229) that is 2.6 A distant from it. The location of this molecule suggests that it can function as the catalytic water molecule in the hydrolysis reaction, resulting in the inversion of the anomeric configuration of the product.


Assuntos
Geobacillus stearothermophilus/enzimologia , Glicosídeo Hidrolases/química , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Glicosídeo Hidrolases/isolamento & purificação , Especificidade por Substrato , Termodinâmica
8.
Structure ; 28(3): 301-313.e6, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31918959

RESUMO

The phenol-soluble modulin (PSM) peptide family, secreted by Staphylococcus aureus, performs various virulence activities, some mediated by the formation of amyloid fibrils of diverse architectures. Specifically, PSMα1 and PSMα4 structure the S. aureus biofilm by assembling into robust cross-ß amyloid fibrils. PSMα3, the most cytotoxic member of the family, assembles into cross-α fibrils in which α helices stack into tightly mated sheets, mimicking the cross-ß architecture. Here we demonstrate that massive T cell deformation and death are linked with PSMα3 aggregation and co-localization with cell membranes. Our extensive mutagenesis analyses support the role of positive charges, and especially Lys17, in interactions with the membrane and suggest their regulation by inter- and intra-helical electrostatic interactions within the cross-α fibril. We hypothesize that PSMα3 cytotoxicity is governed by the ability to form cross-α fibrils and involves a dynamic process of co-aggregation with the cell membrane, rupturing it.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Staphylococcus aureus/patogenicidade , Linfócitos T/citologia , Amiloide/química , Toxinas Bacterianas/genética , Linhagem Celular , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação , Polimorfismo Genético , Agregados Proteicos , Staphylococcus aureus/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
9.
Science ; 355(6327): 831-833, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28232575

RESUMO

Amyloids are ordered protein aggregates, found in all kingdoms of life, and are involved in aggregation diseases as well as in physiological activities. In microbes, functional amyloids are often key virulence determinants, yet the structural basis for their activity remains elusive. We determined the fibril structure and function of the highly toxic, 22-residue phenol-soluble modulin α3 (PSMα3) peptide secreted by Staphylococcus aureus PSMα3 formed elongated fibrils that shared the morphological and tinctorial characteristics of canonical cross-ß eukaryotic amyloids. However, the crystal structure of full-length PSMα3, solved de novo at 1.45 angstrom resolution, revealed a distinctive "cross-α" amyloid-like architecture, in which amphipathic α helices stacked perpendicular to the fibril axis into tight self-associating sheets. The cross-α fibrillation of PSMα3 facilitated cytotoxicity, suggesting that this assembly mode underlies function in S. aureus.


Assuntos
Amiloide/química , Amiloide/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Células Cultivadas , Cristalografia por Raios X , Humanos , Conformação Proteica , Linfócitos T/microbiologia
10.
FEBS J ; 280(3): 950-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23216604

RESUMO

UNLABELLED: Type I galactan is a pectic polysaccharide composed of ß-1,4 linked units of d-galactose and is part of the main plant cell wall polysaccharides, which are the most abundant sources of renewable carbon in the biosphere. The thermophilic bacterium Geobacillus stearothermophilus T-6 possesses an extensive system for the utilization of plant cell wall polysaccharides, including a 9.4-kb gene cluster, ganREFGBA, which encodes galactan-utilization elements. Based on enzyme activity assays, the ganEFGBA genes, which probably constitute an operon, are induced by short galactosaccharides but not by galactose. GanA is a glycoside hydrolase family 53 ß-1,4-galactanase, active on high molecular weight galactan, producing galactotetraose as the main product. Homology modelling of the active site residues suggests that the enzyme can accommodate at least eight galactose molecules (at subsites -4 to +4) in the active site. GanB is a glycoside hydrolase family 42 ß-galactosidase capable of hydrolyzing short ß-1,4 galactosaccharides into galactose. Applying both GanA and GanB on galactan resulted in the full degradation of the polymer into galactose. The ganEFG genes encode an ATP-binding cassette sugar transport system whose sugar-binding lipoprotein, GanE, was shown to bind galacto-oligosaccharides. The utilization of galactan by G. stearothermophilus involves the extracellular galactanase GanA cleaving galactan into galacto-oligosaccharides that enter the cell via a specific transport system GanEFG. The galacto-oligosaccharides are further degraded by the intracellular ß-galactosidase GanB into galactose, which is then metabolized into UDP-glucose via the Leloir pathway by the galKET gene products. DATABASE: Nucleotide sequence data have been deposited in the GenBank database under the accession number JF327803.


Assuntos
Galactanos/metabolismo , Galactose/metabolismo , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Sequência de Carboidratos , Galactanos/química , Galactose/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura , Termodinâmica , beta-Galactosidase/química , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
11.
FEBS Lett ; 586(16): 2436-42, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-22687242

RESUMO

In this study we demonstrate that the abp gene in Geobacillus stearothermophilus T-6 encodes a family 27 glycoside hydrolase ß-L-arabinopyranosidase. The catalytic constants towards the chromogenic substrate pNP-ß-L-arabinopyranoside were 0.8±0.1 mM, 6.6±0.3 s(-1), and 8.2±0.3 s(-1) mM(-1) for K(m), k(cat) and k(cat)/K(m), respectively. (13)C NMR spectroscopy unequivocally showed that Abp is capable of removing ß-L-arabinopyranose residues from the natural arabino-polysaccharide, larch arabinogalactan. Most family 27 enzymes are active on galactose and contain a conserved Asp residue, whereas in Abp this residue is Ile67, which shifts the specificity of the enzyme towards arabinopyranoside.


Assuntos
Geobacillus stearothermophilus/metabolismo , Glicosídeo Hidrolases/química , Sequência de Aminoácidos , Clonagem Molecular , Galactanos/química , Glicosídeo Hidrolases/genética , Glicosídeos/química , Concentração de Íons de Hidrogênio , Isoleucina/química , Cinética , Espectroscopia de Ressonância Magnética/métodos , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Polissacarídeos/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA