Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984862

RESUMO

Teleost IgM+ B cells can phagocytose, like mammalian B1 cells, and secrete Ag-specific IgM, like mammalian B2 cells. Therefore, teleost IgM+ B cells may have the functions of both mammalian B1 and B2 cells. To support this view, we initially found that grass carp (Ctenopharyngodon idella) IgM+ plasma cells (PCs) exhibit robust phagocytic ability, akin to IgM+ naive B cells. Subsequently, we sorted grass carp IgM+ PCs into two subpopulations: nonphagocytic (Pha-IgM+ PCs) and phagocytic IgM+ PCs (Pha+IgM+ PCs), both of which demonstrated the capacity to secrete natural IgM with LPS and peptidoglycan binding capacity. Remarkably, following immunization of grass carp with an Ag, we observed that both Pha-IgM+ PCs and Pha+IgM+ PCs could secrete Ag-specific IgM. Furthermore, in vitro concatenated phagocytosis experiments in which Pha-IgM+ PCs from an initial phagocytosis experiment were sorted and exposed again to beads confirmed that these cells also have phagocytic capabilities, thereby suggesting that all teleost IgM+ B cells have phagocytic potential. Additionally, we found that grass carp IgM+ PCs display classical phenotypic features of macrophages, providing support for the hypothesis that vertebrate B cells evolved from ancient phagocytes. These findings together reveal that teleost B cells are a primitive B cell type with functions reminiscent of both mammalian B1 and B2 cells, providing insights into the origin and evolution of B cells in vertebrates.

2.
Fish Shellfish Immunol ; 140: 108947, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454879

RESUMO

Infectious pancreatic necrosis virus (IPNV) has proven to effectively evade the host antiviral responses. This study clarifies whether the modulation of the antiviral immune response exerted by IPNV involves epigenetic mechanisms. An in-silico characterization of the rainbow trout IFN1 and IFNγ2 promoters was performed, identifying the islands or sequences rich in CpG dinucleotides and the putative transcription factor binding sites (TBS) for both gene promoters. RTS11 cells (rainbow trout monocyte/macrophage) were infected with IPNV, and the course of viral infection was followed up to 48 h post infection (hpi). Infected cells showed increased IFN1 and IFNγ2 transcriptional expression at 6 and 24 hpi, respectively. IPNV infection caused increases and decreases in global IFNγ2 promoter methylation at 6 and 24 hpi, respectively. The CpG dinucleotides at positions -392 and + 38 of this promoter were the most sensitive to methylation changes. The IFN1 promoter remained fully unmethylated during the course of the infection, similar to the control. The changes in the methylation pattern observed for the IFNγ2 promoter were coincident with the changes in DNA methyltransferase (DNMT) expression levels, increasing at 6 hpi and decreasing below basal level at 24 hpi. Similarly, the H4 histones associated with the IFN1 and IFNγ2 promoters were hyperacetylated at 6 hpi, subsequently decreasing their acetylation below basal levels at 24 hpi, in both promoters. Coincidentally with the above, overexpression of histone acetyltransferase (HAT) was observed at 6 hpi and of histone deacetylase (HDAC) at 24 hpi, with return to baseline of HAT. These results suggest that IPNV would epigenetically modulate the expression of IFN1 by changing acetylation levels of the histones H4 associated with its promoter. Also, the modulation of the expression of IFNy2 would be by switching methylation/demethylation levels of its promoter, in addition to changes in acetylation levels of histones H4 associated with this promoter. This study is the first to demonstrate the effect of epigenetic reprogramming after IPNV infection in salmonid cells, demonstrating that promoter methylation/demethylation level and changes in the histone code associated with promoters may play a role in the modulation of the immune response induced by the virus.


Assuntos
Infecções por Birnaviridae , Doenças dos Peixes , Vírus da Necrose Pancreática Infecciosa , Oncorhynchus mykiss , Animais , Vírus da Necrose Pancreática Infecciosa/fisiologia , Histonas/genética , Antivirais , Epigênese Genética , Infecções por Birnaviridae/veterinária
3.
Fish Shellfish Immunol ; 137: 108755, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084856

RESUMO

Cytokines are small proteins that regulate innate and adaptive immune responses and are released by both immune and non-immune cell types. In the current study, the constitutive and induced gene expression profiles of a suite of proinflammatory and regulatory cytokines was examined comparatively in eight rainbow trout (Oncorhynchus mykiss) cell lines, in order to establish the cytokine repertoires of these different cell types, especially the understudied non-immune cells. They included three epithelial cell lines (RTgut, RTgill, and RTL), one endothelial cell line (RTH), one fibroblast cell line (RTG-2), two stromal cell lines (TSS and TPS-2) and one monocyte/macrophage-like cell line (RTS-11). Three types of primary leukocytes (derived from blood, spleen and head kidney) of trout were also included in the analysis, to allow comparison to the repertoires expressed in T cells, as a major source of cytokines in immune responses. The major findings are: 1) IL-2A, IL-2B, IL-4/13B1, IL-4/13B2, IL-10b, P40B1, P28B, IL-17A/F1b, TNF-α3, TNF-α4, IFNγ1, CCL20L2b and CCL20L3a are expressed mainly in leukocytes but IL-17 N, IL-17D, IL-20 and CCL20L1b2 are not expressed in these cells. Hence future studies in these cell lines will help establish their function in fish; 2) Some of the cytokines were differentially expressed in the cell lines, revealing the potential role of these cell types in aspects of trout mucosal and inflammatory immune responses, 3) Similar cell types grouped together in the cell cluster analysis, including the leukocyte cluster, stromal cell cluster, and epithelial and endothelial cell cluster. Taken together, this investigation of these trout cell lines forms a good database for studying the function of cytokines not expressed in isolated leukocytes or that are preferentially expressed in the cell lines. Furthermore, the cytokine expression analysis undertaken confirmed the phenotypic relationship of these cell types at the molecular level.


Assuntos
Citocinas , Oncorhynchus mykiss , Animais , Citocinas/genética , Citocinas/metabolismo , Interleucina-4/metabolismo , Leucócitos/metabolismo , Linhagem Celular
4.
J Immunol ; 206(8): 1765-1775, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33762323

RESUMO

TNF superfamily (TNFSF) members, such as BAFF and a proliferation-inducing ligand (APRIL), emerged in vertebrates as key regulators of B cell homeostasis and activation. Many cartilaginous and teleost fish contain an additional gene, designated as BAFF- and APRIL-like molecule (BALM), of unknown function and lost in tetrapods. In this study, we have performed a wide characterization of the functions of BALM on naive B cells for the first time, to our knowledge, in teleosts using rainbow trout (Oncorhynchus mykiss) as a model. Similar to BAFF and APRIL, BALM increased the survival and promoted the proliferation of peripheral blood IgM+ B cells and cooperated with BCR cross-linking to increase the proliferation rate of IgM+ B cells. BALM also seemed to be a differentiating factor for trout IgM+ B cells, as it increased IgM secretion and increased cell size. Additionally, BALM appeared to increase the Ag-presenting properties of IgM+ B cells, augmenting MHC class II surface expression and upregulating the phagocytic capacity of these cells. Finally, the fact that there was no synergy between BALM and BAFF/APRIL in any of these functions strongly suggests that BALM signals through the same receptors as BAFF and APRIL to carry out its functions. This hypothesis was further supported in competitive BALM binding assays. The results presented provide relevant information for understanding how these TNFSF members cooperate in teleost fish to regulate B cell functionality, helping us to interpret the evolutionary relations between molecules of this family.


Assuntos
Receptor do Fator Ativador de Células B/metabolismo , Linfócitos B/imunologia , Proteínas de Peixes/metabolismo , Oncorhynchus mykiss/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Formação de Anticorpos , Apresentação de Antígeno , Receptor do Fator Ativador de Células B/genética , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Evolução Molecular , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Imunoglobulina M/metabolismo , Transdução de Sinais , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
5.
J Fish Dis ; 46(4): 433-443, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36633210

RESUMO

Mucosal surfaces constitute the main route of entry of pathogens into the host. In fish, these mucosal tissues include, among others, the gastrointestinal tract, the gills and the skin. However, knowledge about the mechanisms of regulation of immunity in these tissues is still scarce, being essential to generate a solid base that allows the development of prevention strategies against these infectious agents. In this work, we have used the RTgutGC and RTgill-W1 epithelial-like cell lines, derived from the gastrointestinal tract and the gill of rainbow trout (Oncorhynchus mykiss), respectively, to investigate the transcriptional response of mucosal epithelial cells to a viral mimic, the dsRNA poly I:C, as well as to two important viral rainbow trout pathogens, namely viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV). Additionally, we have established how the exposure to poly I:C affected the susceptibility of RTgutGC and RTgill-W1 cells to both viruses. Our results reveal important differences in the way these two cell lines respond to viral stimuli, providing interesting information on these cell lines that have emerged in the past years as useful tools to study mucosal responses in fish.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Animais , Células Epiteliais , Poli I-C/farmacologia , Linhagem Celular
6.
Fish Shellfish Immunol ; 128: 419-424, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917890

RESUMO

Disease prevention by vaccination is, on economic, environmental and ethical grounds the most appropriate method for pathogen control currently available to the aquaculture sector. However, vaccine administration in aquatic animals faces obvious technical problems not encountered in other land animals. Thus, oral vaccines are highly demanded by the aquaculture sector that requests alternatives to the labor-intensive injectable vaccines that require individual handling of fish, provoking stress-related immunosuppression and handling mortalities. Despite this, most previous attempts to obtain effective oral vaccines have failed both in fish and mammals. This could be a consequence of very restricted tolerance mechanisms in the intestine given the fact that this mucosa is at the frontline upon antigen encounter and has to balance the delicate equilibrium between tolerance and immunity in a microbe rich aquatic environment. In this context, the search for an optimal combination of antigen and adjuvant that can trigger an adequate immune response able to circumvent intestinal tolerance is needed for each pathogen. To this aim, we have explored potential of molecules such as ß-glucans, flagellin, CpG and bacterial lipopolysacharide (LPS) as oral adjuvants. For this, we have determined the effects of these adjuvants ex vivo in rainbow trout intestine tissue sections, and in vitro in leucocytes isolated from rainbow trout spleen and intestine. The effects were evaluated by analyzing the levels of transcription of different genes related to the innate and adaptive immune response, as well as evaluating the number of IgM-secreting cells. LPS seems to be the molecule with stronger immunostimulatory potential, and could safely be used as a mucosal adjuvant in rainbow trout. Moreover, the designed strategy provides a fast methodology to screen adjuvants that are suitable for oral vaccination, providing us with valuable information about how the intestinal mucosa is regulated in fish.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , beta-Glucanas , Adjuvantes Imunológicos/farmacologia , Animais , Flagelina , Imunoglobulina M , Lipopolissacarídeos , Mamíferos
7.
Fish Shellfish Immunol ; 128: 695-702, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35981702

RESUMO

Adjuvants that would help optimize fish vaccines against bacterial and viral pathogens are highly demanded by the aquaculture sector. Flagellin has been proposed as an immunostimulant and an adjuvant for more than a decade. However, the adjuvant ability of flagellins with hypervariable region deleted is still unclear in fish. In this study, we evaluated the immune-stimulating capacity of two recombinant flagellins, the wild-type flagellin F from Marinobacter algicola and a version with the hypervariable region deleted (FredV2), to induce the transcription of a wide range of immune genes using two rainbow trout cell lines: a monocyte/macrophage-cell line (RTS-11) and an epithelial cell line from intestine (RTgutGC). Additionally, we studied the capacity of both flagellins to limit the replication of viral hemorrhagic septicemia virus (VHSV) on the RTgutGC cell line. Our results demonstrated that both recombinant flagellins can significantly increase the transcription of IL-1ß1, IL-6, and IL-8 in both cell lines. However, other cytokines such as IFNγ1, and TNFα or antimicrobial peptides such as hepcidin were induced by both flagellins in RTgutGC but not in RTS-11 cells. Furthermore, both flagellins were capable of reducing the replication of VHSV in RTgutGC cells. Although the immunostimulatory and the antiviral capacities exerted by F were slightly more potent than those obtained with FredV2, the effects were retained after losing the hypervariable region. Our results provide new information on the immunostimulating and antiviral capacities of flagellins that point to their potential as suitable adjuvants for the future optimization of vaccines in aquaculture.


Assuntos
Septicemia Hemorrágica Viral , Novirhabdovirus , Oncorhynchus mykiss , Adjuvantes Imunológicos/farmacologia , Animais , Antivirais , Citocinas/genética , Flagelina/farmacologia , Hepcidinas , Interleucina-6 , Interleucina-8 , Marinobacter , Fator de Necrose Tumoral alfa
8.
J Anim Ecol ; 90(11): 2573-2593, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165799

RESUMO

Heterogeneity in immunity occurs across numerous disease systems with individuals from the same population having diverse disease outcomes. Proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae, is a persistent parasitic disease negatively impacting both wild and farmed salmonids. Little is known of how PKD is spread or maintained within wild susceptible populations. We investigated an aspect of fish disease that has been largely overlooked, that is, the role of the host phenotypic heterogeneity in disease outcome. We examined how host susceptibility to T. bryosalmonae infection, and the disease PKD, varied across different infection life-history stages and how it differs between naïve, re-infected and persistently infected hosts. We investigated the response to parasite exposure in host phenotypes with (a) different ages and (b) heterogeneous infection life histories. Among (a) the age phenotypes were young-of-the-year (YOY) fish and juvenile 1+ fish (fish older than one) and, for (b) juvenile 1+ infection survivors were either re-exposed or not re- exposed to the parasite and response phenotypes were assigned post-hoc dependant on infection status. In fish not re-exposed this included fish that cleared infection (CI) or had a persistent infection (PI). In fish re-exposed these included fish that were re-infected (RI), or re-exposed and uninfected (RCI). We assessed both parasite-centric (infection prevalence, parasite burden, malacospore transmission) and host-centric parameters (growth rates, disease severity, infection tolerance and the immune response). In (a), YOY fish, parasite success and disease severity were greater and differences in the immune response occurred, demonstrating an ontogenetic decline of susceptibility in older fish. In (b), in PI and RI fish, parasite success and disease severity were comparable. However, expression of several adaptive immunity markers was greater in RI fish, indicating concomitant immunity, as re-exposure did not intensify infection. We demonstrate the relevance of heterogeneity in infection life history on disease outcome and describe several distinctive features of immune ontogeny and protective immunity in this model not previously reported. The relevance of such themes on a population level requires greater research in many aquatic disease systems to generate clearer framework for understanding the spread and maintenance of aquatic pathogens.


Assuntos
Doenças dos Peixes , Nefropatias , Oncorhynchus mykiss , Parasitos , Doenças Parasitárias em Animais , Animais , Doenças dos Peixes/epidemiologia , Doenças Parasitárias em Animais/epidemiologia , Infecção Persistente
9.
Fish Shellfish Immunol ; 117: 328-338, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34343543

RESUMO

IFN-γ is one of the key cytokines involved in Th1 immune responses. It is produced mainly by T cells and NK cells, which drive both innate and adaptive responses to promote protection against infections. IFN-γ orthologues have been discovered to be functionally conserved in fish, suggesting that type I immunity is present in early vertebrates. However, few studies have looked at IFN-γ protein expression in fish and its role in cell mediated immunity due to a lack of relevant tools. In this study, four monoclonal antibodies (mAbs) V27, N2, VAB3 and V91 raised against short salmonid IFN-γ peptides were developed and characterised to monitor IFN-γ expression. The results show that the IFN-γ mAbs specifically react to their peptide immunogens, recognise E. coli produced recombinant IFN-γ protein and rainbow trout IFN-γ produced in transfected HEK 293 cells. The mAb VAB3 was used further, to detect IFN-γ at the cellular level after in vitro and in vivo stimulation. In flow cytometry, a basal level of 3-5% IFN-γ secreting cells were detected in peripheral blood leucocytes (PBL), which increased significantly when stimulated in vitro with PAMPs (Aeromonas salmonicida bacterin), a mitogen (PHA) and recombinant cytokine (IL-2). Similarly, after injection of live bacteria (Aeromonas salmonicida) or poly I:C the number of IFN-γ+ cells increased in the lymphoid population of PBL, as well as in the myeloid population after infection, with the myeloid cells increasing substantially after both treatments. Immunohistochemistry was used to visualise the IFN-γ+ cells in spleen and head kidney following vaccination, which increased in intensity of staining and number relative to tissue from saline-injected control fish. These results show that several types of cells can produce IFN-γ in trout, and that they increase following infection or vaccination, and likely contribute to immune protection. Hence monitoring IFN-γ producing cells/protein secretion may be an important means to assess the effectiveness of Th1 responses and cell mediated immunity in fish.


Assuntos
Proteínas de Peixes/imunologia , Interferon gama/imunologia , Oncorhynchus mykiss/imunologia , Aeromonas salmonicida , Animais , Anticorpos Monoclonais/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Células HEK293 , Rim Cefálico/imunologia , Humanos , Interferon gama/genética , Leucócitos/imunologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/microbiologia , Baço/imunologia
10.
J Immunol ; 202(3): 857-870, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30610164

RESUMO

CK11 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to both mammalian CCL27 and CCL28 chemokines, strongly transcribed in skin and gills in homeostasis, for which an immune role had not been reported to date. In the current study, we have demonstrated that CK11 is not chemotactic for unstimulated leukocyte populations from central immune organs or mucosal tissues but instead exerts a potent antimicrobial activity against a wide range of rainbow trout pathogens. Our results show that CK11 strongly inhibits the growth of different rainbow trout Gram-positive and Gram-negative bacteria, namely Lactococcus garvieae, Aeromonas salmonicida subsp. salmonicida, and Yersinia ruckeri and a parasitic ciliate Ichthyophthirius multifiliis Similarly to mammalian chemokines and antimicrobial peptides, CK11 exerted its antimicrobial activity, rapidly inducing membrane permeability in the target pathogens. Further transcriptional studies confirmed the regulation of CK11 transcription in response to exposure to some of these pathogens in specific conditions. Altogether, our studies related to phylogenetic relations, tissue distribution, and biological activity point to CK11 as a potential common ancestor of mammalian CCL27 and CCL28. To our knowledge, this study constitutes the first report of a fish chemokine with antimicrobial activity, thus establishing a novel role for teleost chemokines in antimicrobial immunity that supports an evolutionary relationship between chemokines and antimicrobial peptides.


Assuntos
Quimiocinas CC/imunologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Oncorhynchus mykiss/imunologia , Aeromonas salmonicida , Animais , Quimiocina CCL27/genética , Quimiocinas CC/genética , Quimiocinas CC/isolamento & purificação , Quimiotaxia , Perfilação da Expressão Gênica , Brânquias/imunologia , Filogenia , Pele/imunologia , Yersinia ruckeri
11.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502366

RESUMO

The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.


Assuntos
Peixes/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Monitoramento Ambiental/métodos , Poluição Ambiental/efeitos adversos , Poluição Ambiental/prevenção & controle , Peixes/genética , Peixes/imunologia , Hidrocarbonetos Aromáticos/toxicidade , Hidrocarbonetos Halogenados/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Xenobióticos/metabolismo
12.
Parasite Immunol ; 42(8): e12730, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32403171

RESUMO

Proliferative kidney disease (PKD), caused by the myxozoan Tetracapsuloides bryosalmonae, is one of the most serious parasitic diseases of salmonids in which outbreaks cause severe economic constraints for the aquaculture industry and declines of wild species throughout Europe and North America. Given that rainbow trout (Oncorhynchus mykiss) is one of the most widely farmed freshwater fish and an important model species for fish immunology, most of the knowledge on how the fish immune response is affected during PKD is from this organism. Once rainbow trout are infected, PKD pathogenesis results in a chronic kidney immunopathology mediated by decreasing myeloid cells and increasing lymphocytes. Transcriptional studies have revealed the regulation of essential genes related to T-helper (Th)-like functions and a dysregulated B-cell antibody type response. Recent reports have discovered unique details of teleost B-cell differentiation and functionality and characterized the differential immunoglobulin (Ig)-mediated response. These studies have solidified the rainbow trout T. bryosalmonae system as a sophisticated disease model capable of feeding key advances into mainstream immunology and have contributed essential information to design novel parasite disease prevention strategies. In our following perspective, we summarize these efforts to evaluate the immune mechanisms of rainbow trout during PKD pathogenesis.


Assuntos
Nefropatias/imunologia , Nefropatias/parasitologia , Myxozoa/imunologia , Oncorhynchus mykiss/imunologia , Doenças Parasitárias em Animais/imunologia , Animais , Linfócitos B/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes , Imunoglobulina D/imunologia , Imunoglobulina M/imunologia , Imunoglobulinas/imunologia , Ativação Linfocitária/imunologia , Myxozoa/genética , Myxozoa/fisiologia , Oncorhynchus mykiss/parasitologia , Doenças Parasitárias em Animais/parasitologia , Linfócitos T Auxiliares-Indutores/imunologia
13.
Fish Shellfish Immunol ; 105: 310-318, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32702476

RESUMO

Oral vaccines are highly demanded by aquaculture sector that requires alternatives to injectable vaccines, involving fish handling, stress-related immunosuppression and mortalities. However, most previous attempts to obtain effective oral vaccines have failed due to a restricted tolerance mechanisms in intestine, whose mucosa is at the frontline of antigen encounter and has to balance the equilibrium between tolerance and immunity in a microbe-rich environment. Thus, the search for oral adjuvants that could augment immune responses triggered by antigens allowing them to circumvent intestinal tolerance is of great relevance. The present work focuses on the adjuvant potential of the Escherichia coli LT(R192G/L211A) toxoid (dmLT). To undertake an initial screening of the potential that dmLT has as an oral adjuvant in rainbow trout (Oncorhynchus mykiss), we have analyzed its transcriptional effects alone or in combination with Aeromonas salmonicida subsp. salmonicida or viral hemorrhagic septicemia virus (VHSV) on rainbow trout intestinal epithelial cell line RTgutGC and gut explants. Our results show that although dmLT provoked no significant effects by itself, it increased the transcription of pro-inflammatory cytokines and antimicrobial genes induced by the bacteria. In contrast, when combined with VHSV, dmLT only increased the transcription of Mx and the intracellular adhesion molecule 1 (ICAM1). Therefore, the protocol designed is an effective method to initially evaluate the effects of potential oral adjuvants, and points to dmLT as an effective adjuvant for oral antibacterial vaccines.


Assuntos
Adjuvantes Imunológicos/metabolismo , Escherichia coli/imunologia , Oncorhynchus mykiss/imunologia , Toxoides/imunologia , Aeromonas/fisiologia , Animais , Linhagem Celular , Mucosa Intestinal/imunologia , Novirhabdovirus/fisiologia , Oncorhynchus mykiss/genética , Transcrição Gênica/imunologia
14.
Fish Shellfish Immunol ; 103: 58-65, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32334130

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide belonging to the glucagon/secretin superfamily. In teleost fish, PACAP has been demonstrated to have an immunomodulatory role. Although previous studies have shown that viral/bacterial infections can influence the transcription of PACAP splicing variants and associated receptors in salmonids, the antiviral activity of PACAP has never been studied in teleost. Thus, in the present work, we investigated in vitro the influence of synthetic Clarias gariepinus PACAP-38 on the transcription of genes related to viral immunity using the rainbow trout monocyte/macrophage-like cell line RTS11 as a model. Positive transcriptional modulation of interferon gamma (IFNγ), interferon alpha (FNα1,2), interleukin 8 (IL-8), Mx and Toll-like receptor 3 (TLR3) genes was found in a dose and time dependent manner. We also explored how a pre-treatment with PACAP could enhance antiviral immune response using poly (I:C) as viral mimic. Interferons and IL-8 transcription levels were enhanced when PACAP was added 24 h previous to poly (I:C) exposure. With these evidences, we tested in vivo how PACAP administration by immersion bath affected the survival of rainbow trout fry to a challenge with viral hemorrhagic septicemia virus (VHSV). After challenge, PACAP-treated fish had increased survival compared to non-treated/challenge fish. Furthermore, PACAP was able to decrease the viral load in spleen/kidney and stimulate the transcription of IFNs and Mx when compared to untreated infected fish. Altogether, the results of this work provide valuable insights regarding the role of teleost PACAP in antiviral immunity and point to a potential application of this peptide to reduce the impact of viral infections in aquaculture.


Assuntos
Antivirais/imunologia , Peixes-Gato/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Imunidade Inata , Oncorhynchus mykiss , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Animais , Proteínas de Peixes/imunologia , Novirhabdovirus/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/imunologia , Poli I-C/farmacologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária
15.
J Immunol ; 201(2): 465-480, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29866701

RESUMO

Despite teleost fish being the first animal group in which all elements of adaptive immunity are present, the lack of follicular structures, as well as the fact that systemic Ab responses rely exclusively on unswitched low-affinity IgM responses, strongly suggests that fish B cell responses resemble mammalian B1 cell responses rather than those of B2 cells. In line with this hypothesis, in the current study, we have identified a homolog of CD5 in teleost fish. This pan-T marker belonging to the scavenger receptor cysteine-rich family of receptors is commonly used in mammals to distinguish a subset of B1 cells. Subsequently, we have demonstrated that a very high percentage of teleost IgM+ B cells express this marker, in contrast to the limited population of CD5-expressing B1 cells found in most mammals. Furthermore, we demonstrate that fish IgM+ B cells share classical phenotypic features of mammalian B1 cells such as large size, high complexity, high surface IgM, and low surface IgD expression, regardless of CD5 expression. Additionally, fish IgM+ B cells, unlike murine B2 cells, also displayed extended survival in cell culture and did not proliferate after BCR engagement. Altogether, our results demonstrate that although fish are evolutionarily the first group in which all the elements of acquired immunity are present, in the absence of follicular structures, most teleost IgM+ B cells have retained phenotypical and functional characteristics of mammalian B1 cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Antígenos CD5/imunologia , Peixes/imunologia , Imunoglobulina M/imunologia , Mamíferos/imunologia , Imunidade Adaptativa/imunologia , Animais , Subpopulações de Linfócitos B/metabolismo , Biomarcadores/metabolismo , Feminino , Peixes/metabolismo , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Imunoglobulina M/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
Fish Shellfish Immunol ; 85: 9-17, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28989090

RESUMO

In teleost fish, IgM+ B cells are one of the main responders against inflammatory stimuli in the peritoneal cavity, as IgM+ B cells dominate the peritoneum after intraperitoneal stimulation, also increasing the levels of secreted IgM. BAFF, a cytokine known to play a major role in B cell biology, has been shown to be up-regulated along with its receptors in the peritoneum of rainbow trout upon antigenic exposure, however, the regulatory mechanisms underneath this response remain unclear. In this study, we have identified two different IgM+ B cell types residing in the peritoneal cavity of previously vaccinated rainbow trout (Oncorhynchus mykiss): IgD+IgMhiMHCIIhi cells, resembling naïve B cells, and IgD-IgMloMHCIIlo cells, resembling antibody-secreting cells. Based on their membrane IgM levels, these cell types were named IgMhi and IgMlo B cells, respectively. As each of these B cell populations showed a distinct expression pattern for the different BAFF receptors, we studied the effect of BAFF individually on each cell subset. Recombinant BAFF promoted the survival of IgMlo but not IgMhi B cells in vitro, resulting in increased levels of IgM-secreting cells. In contrast, BAFF increased the levels of membrane MHC II only on IgMhi B cells, suggesting different functions on these B cell subsets. Moreover, we also showed that peritoneal IgMhi B cells expressed BAFF at levels comparable to those seen on myeloid cells. These results point to BAFF as a main regulator of B cell homeostasis in the peritoneal cavity, suggesting that this cytokine can trigger different signals on different peritoneal B cell subsets in a specific manner.


Assuntos
Fator Ativador de Células B/genética , Linfócitos B/imunologia , Proteínas de Peixes/genética , Imunoglobulina M/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/imunologia , Animais , Fator Ativador de Células B/metabolismo , Proteínas de Peixes/metabolismo , Cavidade Peritoneal/fisiologia , Vacinação/veterinária
17.
Fish Shellfish Immunol ; 86: 135-142, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30448446

RESUMO

Teleost fish possess all the necessary elements to mount an adaptive immune response. Despite this, the important physiological and structural differences between the mammalian and the teleost fish immune system, anticipate significant changes regarding how this response is coordinated and executed. B cells are key players in adaptive immune responses through the production of antibodies. However, recent studies performed in mammals and other species including fish point to many additional functions of B cells within both the adaptive and the innate immune system, in many occasions taking part in the crosstalk between these two arms of the immune response. Furthermore, it should be taken into account that fish B cells share many functional and phenotypical features with innate B cell populations from mammals, which will surely condition their response to antigens. Concerning viral infections, although most studies undertaken to date in fish have been focused on characterizing antibody production, some recent studies have demonstrated that fish B cells are able to interact with viruses at different levels. In this sense, in the current review, we have tried to provide an overview of what is currently known regarding the role of teleost B cells in antiviral immunity.


Assuntos
Linfócitos B/fisiologia , Doenças dos Peixes/virologia , Peixes , Viroses/veterinária , Animais , Imunoglobulinas , Viroses/imunologia
18.
Fish Shellfish Immunol ; 94: 769-779, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31580935

RESUMO

Although viruses represent a major threat for cultured fish worldwide, the commercialization of vaccines capable of providing effective and long-lasting protection is still lacking for most of these viral diseases. In this situation, the use of supplemented diets could be a suitable strategy to increase the immune status of the fish and reduce the impact of viral pathogens. Among possible immunostimulants that could be included in these functional feeds, some studies have previously shown that certain ß-glucans can significantly increase certain immune parameters of fish and reduce the impact of viral diseases. However, the mechanisms through which ß-glucans exert their activity have not been fully elucidated yet. In the current study, we have studied the immune response of different tissues to viral haemorrhagic septicaemia virus (VHSV) in rainbow trout fed with a non-supplemented control diet as well as in fish fed a commercial functional aquafeed (Protec™, Skretting) containing ß-glucans, vitamin C, vitamin E and zinc. For this, after 30 days of feeding the fish with one of the two diets, they were subsequently infected with VHSV by bath or mock-infected. After 2 or 6 days post-infection, fish were sacrificed and the levels of transcription of different immune genes such as IgM, IgT, IgD, Mx, interferon γ (IFN γ) and perforin studied in different tissues (kidney, gut and gills). Additionally, the levels of natural IgMs in serum were also determined. Our results demonstrate that fish fed the functional diet were capable of mounting an increased IgM, IgT, IgD and Mx transcriptional response to the virus. Additionally, these fish also showed increased levels of natural IgMs in serum. These results reveal a previously undescribed effect of functional diets on fish Ig production and point to Protec™ as an adequate diet to be incorporated in holistic programs aimed at mitigating the effect of viral diseases.


Assuntos
Proteínas de Peixes/genética , Expressão Gênica/imunologia , Septicemia Hemorrágica Viral/imunologia , Novirhabdovirus/fisiologia , Oncorhynchus mykiss/imunologia , Transcrição Gênica/imunologia , Ração Animal/análise , Animais , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Proteínas de Peixes/metabolismo , Glucanos/administração & dosagem , Glucanos/metabolismo , Septicemia Hemorrágica Viral/genética , Vitamina E/administração & dosagem , Vitamina E/metabolismo , Vitaminas/administração & dosagem , Vitaminas/metabolismo , Zinco/administração & dosagem , Zinco/metabolismo
19.
Fish Shellfish Immunol ; 89: 309-318, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30959183

RESUMO

Dendritic cells (DCs) are professional antigen presenting cells located at mucosal surfaces and lymphoid tissues. Their main role is to present antigens to T cells and thus regulate the initiation of the acquired immune response and modulate tolerance mechanisms towards self-antigens. Despite their relevance, not many studies have addressed the identification and characterization of specific DC subsets in teleost fish. Previous studies in our group identified a DC subpopulation co-expressing CD8α and major histocompatibility complex II (MHC II) on the cell surface in rainbow trout (Oncorhynchus mykiss) skin and gills. A complete functional and phenotypical characterization of these cell subsets was then undertaken, unequivocally recognizing them as DCs (CD8+ DCs). In the current study, we report the identification of a homologous population in rainbow trout intestinal lamina propria (LP). We have studied the main features of these intestinal CD8+ DCs, comparing them to those of CD8+ DCs from another mucosal tissue (gills). Interestingly, intestinal CD8+ DCs exhibited significant phenotypical and functional differences when compared to gill CD8+ DCs, suggesting that the location of DCs strongly conditions their activation state. These results will contribute to further expand our knowledge on how intestinal immune responses are regulated in fish, helping us to rationally design oral vaccines in the future.


Assuntos
Imunidade Adaptativa , Células Dendríticas/imunologia , Intestinos/imunologia , Oncorhynchus mykiss/imunologia , Animais , Feminino , Brânquias/fisiologia
20.
Fish Shellfish Immunol ; 86: 25-34, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30439501

RESUMO

Flavobacterium psychrophilum is the etiological agent of bacterial cold water disease (BCWD), also referred to as rainbow trout fry syndrome (RTFS), a disease with great economic impact in salmonid aquaculture. Despite this, to date, not many studies have analyzed in depth how the immune system is regulated during the course of the disease. In the current study, we have studied the transcription of several immune genes related to T and B cell activity in the skin of rainbow trout (Oncorhynchus mykiss) naturally infected with F. psychrophilum in a farm located in Lake Titicaca (Peru). The levels of expression of these genes were tested and compared to those obtained in asymptomatic and apparently healthy rainbow trout. In the case of symptomatic fish, skin samples containing characteristic ulcerative lesions were taken, as well as skin samples with no lesions. Our results pointed to a significant local up-regulation of IgD, CD4, CD8, perforin and IFNγ within the ulcerative lesions. On the other hand, no differences between the levels of expression of these genes were visible in the spleen. To confirm these results, the distribution of IgD+ and CD3+ cells was studied through immunohistochemical techniques in the ulcerative lesions. Our results demonstrate a strong local response to F. psychrophilum in rainbow trout in which IgD and T cells seem to play a major role.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/genética , Regulação da Expressão Gênica/imunologia , Oncorhynchus mykiss/imunologia , Animais , Citocinas/genética , Citocinas/metabolismo , Doenças dos Peixes/imunologia , Imunoglobulinas/metabolismo , Oncorhynchus mykiss/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Baço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA