Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862145

RESUMO

Ribosomes that synthesize proteins are among the most central and evolutionarily conserved organelles. Given the key role of proteins in cellular functions, prokaryotic and eukaryotic pathogens have evolved potent toxins to inhibit ribosomal functions and weaken their host. Many of these ribotoxin-producing pathogens are associated with food. For example, food can be contaminated with bacterial pathogens that produce the ribotoxin Shiga toxin, but also with the fungal ribotoxin deoxynivalenol. Shiga toxin cleaves ribosomal RNA, while deoxynivalenol binds to and inhibits the peptidyl transferase center. Despite their distinct modes of action, both groups of ribotoxins hinder protein translation, but also trigger other comparable toxic effects, which depend or not on the activation of the ribotoxic stress response. Ribotoxic stress response-dependent effects include inflammation and apoptosis, whereas ribotoxic stress response-independent effects include endoplasmic reticulum stress, oxidative stress, and autophagy. For other effects, such as cell cycle arrest and cytoskeleton modulation, the involvement of the ribotoxic stress response is still controversial. Ribotoxins affect one organelle yet induce multiple toxic effects with multiple consequences for the cell. The ribosome can therefore be considered as the cellular "Achilles heel" targeted by food borne ribotoxins. Considering the high toxicity of ribotoxins, they pose a substantial health risk, as humans are highly susceptible to widespread exposure to these toxins through contaminated food sources.

2.
Cell Mol Life Sci ; 78(17-18): 6319-6335, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34308492

RESUMO

The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin produced by pathogenic bacteria causing major foodborne diseases worldwide. CDT activates the DNA Damage Response and modulates the host immune response, but the precise relationship between these outcomes has not been addressed so far. Here, we show that chronic exposure to CDT in HeLa cells or mouse embryonic fibroblasts promotes a strong type I interferon (IFN) response that depends on the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) through the recognition of micronuclei. Indeed, despite active cell cycle checkpoints and in contrast to other DNA damaging agents, cells exposed to CDT reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation in daughter cells. These mitotic phenotypes are observed with CDT from various origins and in cancer or normal cell lines. Finally, we show that CDT exposure in immortalized normal colonic epithelial cells is associated to cGAS protein loss and low type I IFN response, implying that CDT immunomodulatory function may vary depending on tissue and cell type. Thus, our results establish a direct link between CDT-induced DNA damage, genetic instability and the cellular immune response that may be relevant in the context of natural infection associated to chronic inflammation or carcinogenesis.


Assuntos
Toxinas Bacterianas/farmacologia , Interferon Tipo I/metabolismo , Nucleotidiltransferases/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Interferon Tipo I/genética , Camundongos , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética
3.
Proc Natl Acad Sci U S A ; 109(27): E1830-8, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22691497

RESUMO

The cycle inhibiting factors (Cifs) are a family of translocated effector proteins, found in diverse pathogenic bacteria, that interfere with the host cell cycle by catalyzing the deamidation of a specific glutamine residue (Gln40) in NEDD8 and the related protein ubiquitin. This modification prevents recycling of neddylated cullin-RING ligases, leading to stabilization of various cullin-RING ligase targets, and also prevents polyubiquitin chain formation. Here, we report the crystal structures of two Cif/NEDD8 complexes, revealing a conserved molecular interface that defines enzyme/substrate recognition. Mutation of residues forming the interface suggests that shape complementarity, rather than specific individual interactions, is a critical feature for complex formation. We show that Cifs from diverse bacteria bind NEDD8 in vitro and conclude that they will all interact with their substrates in the same way. The "occluding loop" in Cif gates access to Gln40 by forcing a conformational change in the C terminus of NEDD8. We used native PAGE to follow the activity of Cif from the human pathogen Yersinia pseudotuberculosis and selected variants, and the position of Gln40 in the active site has allowed us to propose a catalytic mechanism for these enzymes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Photorhabdus/enzimologia , Ubiquitinas/química , Ubiquitinas/metabolismo , Yersinia pseudotuberculosis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalização , Glutamina/genética , Células HeLa , Interações Hospedeiro-Parasita/fisiologia , Humanos , Dados de Sequência Molecular , Mutagênese/fisiologia , Proteína NEDD8 , Proteína Oncogênica p21(ras)/metabolismo , Photorhabdus/genética , Poliubiquitina/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Ubiquitinas/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/metabolismo , Infecções por Yersinia pseudotuberculosis/microbiologia
4.
Acta Vet Hung ; 63(1): 1-10, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25655410

RESUMO

Cytolethal distending toxins (CDT) are considered the prototype of inhibitory cyclomodulins, and are produced by a wide range of Gram-negative pathogenic bacteria, including Escherichia coli strains of various sero- and pathotypes. CDT is a heterotripartite toxin consisting of three protein subunits, CdtA, CdtB and CdtC. The active subunit, CdtB has DNase activity and causes DNA damage and cell cycle arrest in the target cell. However, several studies have highlighted different roles for CdtA and CdtC subunits. In order to reveal the necessity of CdtA and CdtC subunit proteins in the CDT-specific phenotype, expression clones containing the cdt-V subunit genes were constructed. Using cell culture assays, we demonstrated that clones expressing only the CdtB subunit or in combination with only CdtA or CdtC were unable to trigger the specific cell cycle arrest and changes in cell morphology in HeLa cells. At the same time, the recombinant clone harbouring the whole cdt-V operon caused all the CDT-associated characteristic phenotypes. All these results verify that all the three CDT subunit proteins are necessary for the genotoxic effect caused by CDT-V.

5.
PLoS Pathog ; 6(9): e1001128, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20941356

RESUMO

The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21(waf1) and p27(kip1). Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria.


Assuntos
Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Ubiquitinas/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Ciclo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27 , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína NEDD8 , Transporte Proteico , Ratos , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação , Ubiquitinas/genética
6.
Autophagy ; 18(12): 2913-2925, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35311462

RESUMO

Escherichia coli strains are responsible for a majority of human extra-intestinal infections, resulting in huge direct medical and social costs. We had previously shown that HlyF encoded by a large virulence plasmid harbored by pathogenic E. coli is not a hemolysin but a cytoplasmic enzyme leading to the overproduction of outer membrane vesicles (OMVs). Here, we showed that these specific OMVs inhibit the macroautophagic/autophagic flux by impairing the autophagosome-lysosome fusion, thus preventing the formation of acidic autolysosomes and autophagosome clearance. Furthermore, HlyF-associated OMVs were more prone to activate the non-canonical inflammasome pathway. Because autophagy and inflammation are crucial in the host's response to infection especially during sepsis, our findings revealed an unsuspected role of OMVs in the crosstalk between bacteria and their host, highlighting the fact that these extracellular vesicles have exacerbated pathogenic properties.Abbreviations: AIEC: adherent-invasive E. coliBDI: bright detail intensityBMDM: bone marrow-derived macrophagesCASP: caspaseE. coli: Escherichia coliEHEC: enterohemorrhagic E. coliExPEC: extra-intestinal pathogenic E. coliGSDMD: gasdermin DGFP: green fluorescent proteinHBSS: Hanks' balanced salt solutionHlyF: hemolysin FIL1B/IL-1B: interleukin 1 betaISX: ImageStreamX systemLPS: lipopolysaccharideMut: mutatedOMV: outer membrane vesicleRFP: red fluorescent proteinTEM: transmission electron microscopyWT: wild-type.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/metabolismo , Inflamassomos/metabolismo , Proteínas Hemolisinas , Autofagia , Infecções por Escherichia coli/metabolismo
7.
mSphere ; 6(4): e0062421, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378987

RESUMO

The probiotic Escherichia coli strain Nissle 1917 (DSM 6601, Mutaflor), generally considered beneficial and safe, has been used for a century to treat various intestinal diseases. However, Nissle 1917 hosts in its genome the pks pathogenicity island that codes for the biosynthesis of the genotoxin colibactin. Colibactin is a potent DNA alkylator, suspected to play a role in colorectal cancer development. We show in this study that Nissle 1917 is functionally capable of producing colibactin and inducing interstrand cross-links in the genomic DNA of epithelial cells exposed to the probiotic. This toxicity was even exacerbated with lower doses of the probiotic, when the exposed cells started to divide again but exhibited aberrant anaphases and increased gene mutation frequency. DNA damage was confirmed in vivo in mouse models of intestinal colonization, demonstrating that Nissle 1917 produces the genotoxin in the gut lumen. Although it is possible that daily treatment of adult humans with their microbiota does not produce the same effects, administration of Nissle 1917 as a probiotic or as a chassis to deliver therapeutics might exert long-term adverse effects and thus should be considered in a risk-versus-benefit evaluation. IMPORTANCE Nissle 1917 is sold as a probiotic and considered safe even though it has been known since 2006 that it harbors the genes for colibactin synthesis. Colibactin is a potent genotoxin that is now linked to causative mutations found in human colorectal cancer. Many papers concerning the use of this strain in clinical applications ignore or elude this fact or misleadingly suggest that Nissle 1917 does not induce DNA damage. Here, we demonstrate that Nissle 1917 produces colibactin in vitro and in vivo and induces mutagenic DNA damage. This is a serious safety concern that must not be ignored in the interests of patients, the general public, health care professionals, and ethical probiotic manufacturers.


Assuntos
Dano ao DNA , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genoma Bacteriano , Mutagênese , Probióticos , Animais , Células CHO , Cricetulus , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Feminino , Ilhas Genômicas , Células HeLa , Humanos , Camundongos , Mutação
8.
Front Cell Infect Microbiol ; 10: 586934, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330131

RESUMO

Salmonella Typhimurium expresses on its outer membrane the protein Rck which interacts with the epidermal growth factor receptor (EGFR) of the plasma membrane of the targeted host cells. This interaction activates signaling pathways, leading to the internalization of Salmonella. Since EGFR plays a key role in cell proliferation, we sought to determine the influence of Rck mediated infection on the host cell cycle. By analyzing the DNA content of uninfected and infected cells using flow cytometry, we showed that the Rck-mediated infection induced a delay in the S-phase (DNA replication phase) of the host cell cycle, independently of bacterial internalization. We also established that this Rck-dependent delay in cell cycle progression was accompanied by an increased level of host DNA double strand breaks and activation of the DNA damage response. Finally, we demonstrated that the S-phase environment facilitated Rck-mediated bacterial internalization. Consequently, our results suggest that Rck can be considered as a cyclomodulin with a genotoxic activity.


Assuntos
Proteínas da Membrana Bacteriana Externa , Salmonella typhimurium , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias , Divisão Celular , Membrana Celular , Salmonella typhimurium/genética , Transdução de Sinais
9.
Infect Immun ; 77(12): 5471-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19786559

RESUMO

The cycle inhibiting factor (Cif) belongs to a family of bacterial toxins, the cyclomodulins, which modulate the host cell cycle. Upon injection into the host cell by the type III secretion system of enteropathogenic Escherichia coli (EPEC), Cif induces both G(2) and G(1) cell cycle arrests. The cell cycle arrests correlate with the accumulation of p21(waf1) and p27(kip1) proteins that inhibit CDK-cyclin complexes, whose activation is required for G(1)/S and G(2)/M transitions. Increases of p21 and p27 levels are independent of p53 transcriptional induction and result from protein stabilization through inhibition of the ubiquitin/proteasome degradation pathway. In this study, we show that Cif not only induces cell cycle arrest but also eventually provokes a delayed cell death. Indeed, 48 h after infection with EPEC expressing Cif, cultured IEC-6 intestinal cells were positive for extracellular binding of annexin V and exhibited high levels of cleaved caspase-3 and lactate dehydrogenase release, indicating evidence of apoptosis. Cif was necessary and sufficient for inducing this late apoptosis, and the cysteine residue of the catalytic site was required for Cif activity. These results highlight a more complex role of Cif than previously thought, as a cyclomodulin but also as an apoptosis inducer.


Assuntos
Apoptose , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/fisiologia , Fatores de Virulência/fisiologia , Animais , Anexina A5/metabolismo , Caspase 3/metabolismo , Linhagem Celular , L-Lactato Desidrogenase/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Ratos
10.
Cell Microbiol ; 10(12): 2496-508, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18705694

RESUMO

The cycle inhibiting factor (Cif) is a cyclomodulin produced by enteropathogenic and enterohemorrhagic Escherichia coli. Upon injection into the host cell by the bacterial type III secretion system, Cif inhibits the G2/M transition via sustained inhibition of the mitosis inducer CDK1 independently of the DNA damage response. In this study, we show that Cif induces not only G2, but also G1 cell cycle arrest depending on the stage of cells in the cell cycle during the infection. In various cell lines including differentiated and untransformed enterocytes, the cell cycle arrests are correlated with the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). Cif-induced cyclin-dependent kinase inhibitor accumulation is independent of the p53 pathway but occurs through inhibition of their proteasome-mediated degradation. Our results provide a direct link between the mode of action of Cif and the host cell cycle control.


Assuntos
Proteína Quinase CDC2/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27 , Humanos
11.
Sci Rep ; 9(1): 7694, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118484

RESUMO

Staphylococcus aureus causes serious medical problems in human and animals. Here we show that S. aureus can compromise host genomic integrity as indicated by bacteria-induced histone H2AX phosphorylation, a marker of DNA double strand breaks (DSBs), in human cervix cancer HeLa and osteoblast-like MG-63 cells. This DNA damage is mediated by alpha phenol-soluble modulins (PSMα1-4), while a specific class of lipoproteins (Lpls), encoded on a pathogenicity island in S. aureus, dampens the H2AX phosphorylation thus counteracting the DNA damage. This DNA damage is mediated by reactive oxygen species (ROS), which promotes oxidation of guanine forming 7,8-dihydro-8-oxoguanine (8-oxoG). DNA damage is followed by the induction of DNA repair that involves the ATM kinase-signaling pathway. An examination of S. aureus strains, isolated from the same patient during acute initial and recurrent bone and joint infections (BJI), showed that recurrent strains produce lower amounts of Lpls, induce stronger DNA-damage and prompt the G2/M transition delay to a greater extent that suggest an involvement of these mechanisms in adaptive processes of bacteria during chronicization. Our findings redefine our understanding of mechanisms of S. aureus-host interaction and suggest that the balance between the levels of PSMα and Lpls expression impacts the persistence of the infection.


Assuntos
Dano ao DNA , Staphylococcus aureus/patogenicidade , Acetilcisteína/farmacologia , Artrite Infecciosa/microbiologia , Toxinas Bacterianas/farmacologia , Linhagem Celular Tumoral , Reparo do DNA , Etoposídeo/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Ilhas Genômicas , Guanina/análogos & derivados , Guanina/metabolismo , Células HeLa/microbiologia , Histonas/análise , Interações Hospedeiro-Patógeno , Humanos , Lipoproteínas/farmacologia , Osteíte/microbiologia , Osteoblastos/microbiologia , Estresse Oxidativo , Fosforilação , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio , Infecções Estafilocócicas/microbiologia
12.
mBio ; 9(2)2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559578

RESUMO

Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal E. coli Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized. Here, we show that DNA strands are cross-linked covalently when exposed to enterobacteria producing colibactins. DNA cross-linking is abrogated in a clbP mutant unable to deacetylate precolibactins or by adding the colibactin self-resistance protein ClbS, confirming the involvement of the mature forms of colibactins. A similar DNA-damaging mechanism is observed in cellulo, where interstrand cross-links are detected in the genomic DNA of cultured human cells exposed to colibactin-producing bacteria. The intoxicated cells exhibit replication stress, activation of ataxia-telangiectasia and Rad3-related kinase (ATR), and recruitment of the DNA cross-link repair Fanconi anemia protein D2 (FANCD2) protein. In contrast, inhibition of ATR or knockdown of FANCD2 reduces the survival of cells exposed to colibactin-producing bacteria. These findings demonstrate that DNA interstrand cross-linking is the critical mechanism of colibactin-induced DNA damage in infected cells.IMPORTANCE Colorectal cancer is the third-most-common cause of cancer death. In addition to known risk factors such as high-fat diets and alcohol consumption, genotoxic intestinal Escherichia coli bacteria producing colibactin are proposed to play a role in colon cancer development. Here, by using transient infections with genotoxic E. coli, we showed that colibactins directly generate DNA cross-links in cellulo Such lesions are converted into double-strand breaks during the repair response. DNA cross-links, akin to those induced by metabolites of alcohol and high-fat diets and by widely used anticancer drugs, are both severely mutagenic and profoundly cytotoxic lesions. This finding of a direct induction of DNA cross-links by a bacterium should facilitate delineating the role of E. coli in colon cancer and engineering new anticancer agents.


Assuntos
Escherichia coli/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo
13.
Curr Opin Microbiol ; 8(1): 83-91, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15694861

RESUMO

The mammalian cell cycle is involved in many processes--such as immune responses, maintenance of epithelial barrier functions, and cellular differentiation--that affect the growth and colonization of pathogenic bacteria. Therefore it is not surprising that many bacterial pathogens manipulate the host cell cycle with respect to these functions. Cyclomodulins are a growing family of bacterial toxins and effectors that interfere with the eukaryotic cell cycle. Here, we review some of these cyclomodulins such as cytolethal distending toxins, vacuolating cytotoxin, the polyketide-derived macrolide mycolactone, cycle-inhibiting factor, cytotoxic necrotizing factors, dermonecrotic toxin, Pasteurella multocida toxin and cytotoxin-associated antigen A. We describe and compare their effects on the mammalian cell cycle and their putative role in disease, commensalism and symbiosis. We also discuss a possible link between these cyclomodulins and cancer.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Toxinas Bacterianas/farmacologia , Ciclo Celular/efeitos dos fármacos , Células Eucarióticas/microbiologia , Animais , Bactérias/metabolismo , Divisão Celular/efeitos dos fármacos , Criança , Pré-Escolar , Células Eucarióticas/efeitos dos fármacos , Humanos
15.
Artigo em Inglês | MEDLINE | ID: mdl-28589102

RESUMO

Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host.


Assuntos
Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Toxinas Bacterianas/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Eucarióticas/microbiologia , Toxina Adenilato Ciclase/toxicidade , Animais , Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/toxicidade , Toxina da Cólera/toxicidade , Células Eucarióticas/efeitos dos fármacos , Exotoxinas/toxicidade , Interações Hospedeiro-Parasita , Humanos , Leucocidinas/toxicidade , Macrolídeos/toxicidade , Toxina Shiga/toxicidade , Transdução de Sinais , Fatores de Virulência/toxicidade
16.
Trends Microbiol ; 13(3): 103-10, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15737728

RESUMO

Microbial pathogens have developed a variety of strategies to manipulate host-cell functions, presumably for their own benefit. We propose the term "cyclomodulins" to describe the growing family of bacterial toxins and effectors that interfere with the eukaryotic cell cycle. Inhibitory cyclomodulins, such as cytolethal distending toxins (CDTs) and the cycle inhibiting factor (Cif), block mitosis and might constitute powerful weapons for immune evasion by inhibiting clonal expansion of lymphocytes. Cell-cycle inhibitors might also impair epithelial-barrier integrity, allowing the entry of pathogenic bacteria into the body or prolonging their local existence by blocking the shedding of epithelia. Conversely, cyclomodulins that promote cellular proliferation, such as the cytotoxic necrotizing factor (CNF), exemplify another subversion mechanism by interfering with pathways of cell differentiation and development. The role of these cyclomodulins in bacterial virulence and carcinogenesis awaits further study and will delineate new perspectives in basic research and therapeutic applications.


Assuntos
Toxinas Bacterianas/imunologia , Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Animais , Ciclo Celular/fisiologia , Proteínas de Escherichia coli/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Humanos
17.
EcoSal Plus ; 7(1)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27419387

RESUMO

While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.


Assuntos
Toxinas Bacterianas , Escherichia coli/patogenicidade , Mutagênicos , Peptídeos , Policetídeos , Salmonella typhi/patogenicidade , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Ciclo Celular , Dano ao DNA , Escherichia coli/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Camundongos , Neoplasias/microbiologia , Peptídeos/genética , Peptídeos/metabolismo , Policetídeos/metabolismo , Salmonella typhi/metabolismo
18.
Mol Cell Endocrinol ; 187(1-2): 173-8, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11988325

RESUMO

A cytoplasmic activity in mature oocytes responsible for second meiotic metaphase arrest was identified over 30 years ago in amphibian oocytes. In Xenopus oocytes cytostatic factor (CSF) activity is initiated by the progesterone-dependent synthesis of Mos, a MAPK kinase kinase that activates the MAPK pathway. CSF arrest is mediated by a sole MAPK target, the protein kinase p90(Rsk). Rsk phosphorylates and activates the Bub1 protein kinase, which may cause metaphase arrest due to inhibition of the anaphase-promoting complex (APC) by a conserved mechanism defined genetically in yeast and mammalian cells. CSF arrest in vertebrate oocytes by p90(Rsk) provides a link between the MAPK pathway and the spindle assembly checkpoint in the cell cycle.


Assuntos
Meiose , Oócitos/citologia , Proteínas Proto-Oncogênicas c-mos/fisiologia , Vertebrados/fisiologia , Animais , Ciclo Celular/fisiologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Oócitos/metabolismo
19.
PLoS One ; 8(5): e63279, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717407

RESUMO

Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.


Assuntos
Células Epiteliais/microbiologia , Staphylococcus aureus/fisiologia , Animais , Proteína Quinase CDC2/metabolismo , Bovinos , Proliferação de Células , Tamanho Celular , Células Epiteliais/enzimologia , Células Epiteliais/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HeLa , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Mitose , Índice Mitótico , Fosforilação , Processamento de Proteína Pós-Traducional , Staphylococcus aureus/patogenicidade
20.
Toxins (Basel) ; 3(4): 356-68, 2011 04.
Artigo em Inglês | MEDLINE | ID: mdl-22069713

RESUMO

Cycle inhibiting factors (Cifs) are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are "cyclomodulins" that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL) complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Ubiquitinas/genética , Apoptose , Sistemas de Secreção Bacterianos , Ciclo Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas de Escherichia coli/genética , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Proteína NEDD8 , Transdução de Sinais , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA